نظریه بازیها Game Theory

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Non-zero sum games

Material

- Dynamic Non-cooperative Game Theory: Second Edition
 - Chapter 3.6
 - Chapter4: Sections 4:1–4:3.

Non-zero sum games

□ Zero sum games

□ Non-zero sum games

□ N-player games

Bimatrix formulation

□ Nash equilibrium in mixed strategies

Completely mixed NE

Computing mixed NE

□ Stackelberg games

Stackelberg vs. bilevel optimization

Example: self driving car

 \Box when car 1 announces its decision to car 2.

Rational reaction

 \Box pure-strategy space of the leader (Player 1): $\Gamma^{(1)}$

 \Box pure-strategy space of the follower (Player 2): $\Gamma^{(2)}$

Rational Reaction

For each pure strategy $\gamma^{(1)} \in \Gamma^{(1)}$ of the leader, we define the rational reaction set $R(\gamma^{(1)}) \subseteq \Gamma^{(2)}$ as $R(\gamma^{(1)}) = \{\gamma^{(2)} \in \Gamma^{(2)} \mid J_2(\gamma^{(1)}, \gamma^{(2)}) \leq J_2(\gamma^{(1)}, \xi) \quad \forall \xi \in \Gamma^{(2)}\}$

 $R(\gamma^{(1)})$ is a set: there might be multiple responses to $\gamma^{(1)}$ which are equivalent for Player 2

$$A = \begin{bmatrix} 3 & 0 \\ 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 3 \\ 2 & 2 \end{bmatrix} \qquad R(\gamma_1^{(1)}) = \{\gamma_1^{(2)}\} \\ R(\gamma_2^{(1)}) = \{\gamma_1^{(2)}, \gamma_2^{(2)}\}$$

Stackelberg equilibrium strategy

Stackelber equilibrium

A strategy $\gamma^{(1)} \in \Gamma^{(1)}$ is called a Stackelberg equilibrium strategy for the leader (Player 1) if $\gamma^{(1)} \in S \coloneqq \arg\min_{\gamma^{(1)} \in \Gamma^{(1)}} \max_{\gamma^{(2)} \in R(\gamma^{(1)})} J_1(\gamma^{(1)}, \gamma^{(2)})$

The resulting outcome J_1^* is the Stackelberg cost of the leader.

□ The Stackelberg equilibrium strategy is **not necessarily unique**. □ J_1^* is a conservative bound (worst case) on J_1 .

Example:

Rational reaction sets:

$$A = \begin{bmatrix} 3 & 0 \\ 2 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 3 \\ 2 & 2 \end{bmatrix} \qquad \qquad R(N) = \{E\}$$
$$R(S) = \{E, W\}$$

Worst rational reaction (for the leader):

$$\max_{\gamma^{(2)} \in R(N)} J_1(N, \gamma^{(2)}) = 3$$
$$\max_{\gamma^{(2)} \in R(S)} J_1(S, \gamma^{(2)}) = 3$$

Therefore
$$S = \{N, S\}$$

□ Stackelberg game in an optimization framework, assuming the reaction set *R* is a singleton: $R = {r(x)}$.

10

Stackelberg vs. bilevel optimization

دانتگامین خارند بیش الدین طوی

We have considered Stackelberg games

- one stage, sequential play
- □ two players (leader and follower), non-zero-sum
- □ compact action set

no mixed strategies (perfect information)

The solution of Stackelberg games is closely connected to solving bilevel optimization problems

➢ non convex

➤ in general hard to solve!

An application in control of chemical processes

Problem

Determine the chemical composition of a complex mixture under **chemical equilibrium conditions**, at a given temperature and pressure.

Example: Burning rocket fuel(at 3500°, 50 atm) N_2H_4 (Hydrazine) O_2 H,H₂,H₂O,N,N₂,NH,NO,O,O₂,OH In what ratio?

Chemical equilibrium and Free energy

Chemical equilibrium model

A mixture of chemical species held at a constant temperature and pressure reaches its chemical equilibrium state concurrently with reduction of the free energy of the mixture to a minimum.

It follows from the second law of thermodynamics. Parameters of the problem:

- Mixture of *m* chemical elements (N, H, ...)
- > *n* possible compounds (N₂H₄, H, O₂, ...)
- > c_{ij} is the number of atoms of element *i* in compound *j*

$$C = [\mathbf{c}_{ij}] \in \mathbf{N}^{m \times n}$$

Free energy

□ For example :

Free energy

□ $y_j, j_n = 1, ..., n$: moles of the compound *j* in the mixture □ $\overline{y} = \sum_{j=1}^{n} y_j$: total number of moles.

Gibbs free energy

$$E(x, y) = \sum_{j=1}^{n} y_{j} \left[k_{j}(x) + \log(\frac{y_{j}}{\overline{y}})\right]$$
$$k_{j}(x) = \left(\frac{\mu_{j}(x)}{Rx}\right) + \log P$$

Where

Where *x* is the process **temperature**, and parameters are known.

Chemical equilibrium

The composition of the mixture at chemical equilibrium is the solution of **the free energy minimization**

$$\min_{y_j, j=1,...,n} E(x, y) = \sum_{j=1}^n y_j [k_j(x) + \log(\frac{y_j}{\overline{y}})]$$

subject to mass balance constraints

$$\sum_{j=1}^{n} c_{ij} y_{j} = b_{i}, \qquad y_{j} \ge 0,$$

Where \mathbf{b}_i is the amount of element *i* in the mixture.

Chemical equilibrium (example)

Burning rocket fuel (at 3500°, 50 atm):
$$\frac{1}{2}N_2H_4 + \frac{1}{2}O_2$$

ΝΟ н Н 1 2 H_2 2 H_2O 1 1 Ν 2 1 N_2 $C^{\top} =$ 1 NH 1 1 NO 0 2 O_2 1 OH

Amount of elements in the mixture: • H:b₁=2 • N:b₂=1 • O:b₃=1 Mass balance constraints: $y \in R^{10}_{\geq 0}$ Cy = b

17

Chemical equilibrium (example)

$$\min_{\substack{y_j, j=1,...,n}} E(y, x = T)$$

subject $Cy = b$

Global minimization

The **global minimum** is the chemical equilibrium of the mixture.

→Sometimes hard to compute – although Nature does it really well!

Rocket fuel example:

$$y* = \begin{bmatrix} 0.0407 & 0.1477 & 0.7831 & 0.0014 & 0.4853 & 0.0007 & 0.0274 & 0.0180 & 0.0373 & 0.0969 \end{bmatrix}$$
$$Cy = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$$

18

Chemical equilibrium and Stackelberg

$$\min_{y_j, j=1,...,n} E(y, x = T)$$

subject $Cy = b$
Stackelberg game where
"Nature" is the follower, with
cost function $J_2(x,y) = E(x,y)$ (Gibbs free energy)
Actions $y \in \mathbb{R}^n_{\geq 0}$ (element mixture)
"decides" the chemical equilibrium y, given the temperature x
We design the leader, a temperature controller with
our desired cost function $J_1(x,y)$ of temperature and mixture
Action x(temperature)

decides the temperature and allows the system to react

Iron Furnace

In Iron furnace, row materials are continuously added

- Oxygen
- Iron oxid
- Carbon
- Water

And the temperature *x* is controlled **Output:** CO $CO_2 H_2 O_2 H_2 O$ FeO Fe C **Cost :**

Cost (x) –price (y_{Fe})

Iron Furnace

Stackelberg game

Leader: Controller – action space $x \in [T_{\min}, T_{\max}]$ **Follower:** Nature – action space $y \in Y = \{y \in R^8_{\geq 0} \mid Cy = b\}$

□ $b = Cy^{in}$, where y^{in} is the input mixture of compounds Bilevel optimization problem

 $R(x) = \arg \min_{y \in Y(x)} E(x, y)$

$$\min_{\substack{x,y\\ y}} \quad J_1(x,y) = a_1 x + a_2 x^2 - \gamma y_{Fe}$$

subject to $x \in [T_{\min}, T_{\max}]$
 $y = R(x)$

Where

21

Cost function:

Applications of Stackelberg games

- > Other applications:
- Traffic control
- Chemical Process Synthesis
- ➤ Market
- ≻ etc.