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Material

 Dynamic Non-cooperative Game Theory: Second Edition
 Chapter 3.6
 Chapter4: Sections 4:1–4:3.

Non-zero sum games
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Zero sum games

Non-zero sum games
N-player games
Bimatrix formulation
Nash equilibrium in mixed strategies
Completely mixed NE
Computing mixed NE
Stackelberg games
Stackelberg vs. bilevel optimization

Non-zero sum games
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Stackelberg Games
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Consider a class of 2-player non-zero-sum games with

 sequential decision

 single stage

 perfect information

Asymmetric roles

 Leader: Player 1, chooses first and announces its decision

 Follower: Player 2, chooses second, and knows Player 1 choice.

We define these games Stackelberg games, and their Nash 
equilibrium Stackelberg solution.



Example: self driving car
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when car 1 announces its decision to car 2.

Nash equilibria (no regret strategy)
(remain,remain), (swerve,swerve) 

 Stackelberg equilibrium
(swerve,swerve) 

( ) 



Rational reaction
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pure-strategy space of the leader (Player 1):

pure-strategy space of the follower (Player 2):

is a set: there might be multiple responses to       which are

equivalent for Player 2
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Rational Reaction

For each pure strategy                    of the leader, we define the

rational reaction set                          as
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Stackelberg equilibrium strategy
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The Stackelberg equilibrium strategy is not necessarily unique.

 is a conservative bound (worst case) on     .

Stackelber equilibrium

A strategy                     is called a Stackelberg equilibrium strategy for

the leader (Player 1) if

The resulting outcome       is the Stackelberg cost of the leader.
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Example:
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Rational reaction sets:

Worst rational reaction (for the leader):

Therefore  
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Compact pure-strategy space
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Assume compact pure-strategy space for both Players.
Example :

{0,1}

[a,b]



but not



 Stackelberg games of this kind can be interpreted as constrained 
optimization problems

[0,1] Rn n

N,Rn

1:Player x X 2 :Player y Y



Bilevel optimization problem
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Stackelberg game in an optimization framework, assuming the 
reaction set R is a singleton:                  .

Bilevel optimization problem

A bilevel optimization program has the structure

Where
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Stackelberg vs. bilevel optimization
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We have considered Stackelberg games

one stage, sequential play

 two players (leader and follower), non-zero-sum

 compact action set

 no mixed strategies (perfect information)

The solution of Stackelberg games is closely connected to solving 
bilevel optimization problems

 non convex

 in general hard to solve!



An application in control of chemical 
processes
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Example:  Burning rocket fuel(at 3500◦, 50 atm)N2H4(Hydrazine)O2

H,H2,H2O,N,N2,NH,NO,O,O2,OH 

In what ratio?

Problem

Determine the chemical composition of a complex mixture under

chemical equilibrium conditions, at a given temperature and

pressure.



Chemical equilibrium and Free energy
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It follows from the second law of thermodynamics.

Parameters of the problem:

Mixture of m chemical elements (N, H, ...)

 n possible compounds (N2H4, H, O2, ...)

 cij is the number of atoms of element i in compound j

Chemical equilibrium model

A mixture of chemical species held at a constant temperature and

pressure reaches its chemical equilibrium state concurrently with

reduction of the free energy of the mixture to a minimum.

[c ] Nm n
ijC  



Free energy
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For example :



Free energy
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 moles of the compound j in the mixture

 total number of moles.

Gibbs free energy

Where

Where x is the process temperature, and parameters are known.
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Chemical equilibrium
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The composition of the mixture at chemical equilibrium is the

solution of the free energy minimization

subject to mass balance constraints

Where bi is the amount of element i in the mixture.
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Chemical equilibrium (example)
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Burning rocket fuel (at 3500◦, 50 atm):

Amount of elements in the mixture:

• H:b1=2

• N:b2=1

• O:b3=1

Mass balance constraints:

Cy b

2 4 2
1 1
2 2

N H O
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Chemical equilibrium (example)
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Rocket fuel example:

, 1, ,
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Global minimization

The global minimum is the chemical equilibrium of the mixture.

→Sometimes hard to compute – although Nature does it really well!



Chemical equilibrium and Stackelberg
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Stackelberg game where
“Nature” is the follower, with
cost function J2(x,y) =E(x,y)(Gibbs free energy)
Actions                  (element mixture)
“decides” the chemical equilibrium y, given the temperature x

We design the leader, a temperature controller with
our desired cost function J1(x,y) of temperature and mixture
Action x(temperature)
decides the temperature and allows the system to react
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Iron Furnace
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In Iron  furnace, row materials are 
continuously added
 Oxygen
 Iron oxid
 Carbon
 Water
And the temperature x is controlled 
Output:
CO  CO2 H2 O2 H2O FeO Fe C
Cost :

Cost (x) –price (yFe)



Iron Furnace
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 , where      is the input mixture of compounds
Bilevel optimization problem

Where
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Stackelberg game

Leader: Controller – action space

Follower: Nature – action space 
min maxx [T ,T ]
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Equilibria
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For each temperature x:

( )
arg min ( , ) subject to Cy b,y 0 (b 1)Fey Y x

y E x y


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Equilibria
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Example : x=1400◦

 ( ) 2.54 0.04 0.72 0.00 0.03 0.0 0.99 0 161 . TR x 



Cost function:
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Plot

Find the temperature  

* 2
1 1 2( , ) FeJ x y a x a x y  

* *
1argmin ( , )

x
x J x y



Applications of Stackelberg games
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Other applications:

Traffic control

Chemical Process Synthesis

Market 

 etc.


