

Non-zero sum games

Material

- Dynamic Non-cooperative Game Theory: Second Edition
 - Chapter4: Sections 4:1–4:3.

Infinite Games

□ Zero sum games

□ Non-zero sum games

□ Infinite Games

Countably Infinite Actions

Continuous Action Sets

Introduction

Reaction Curves and Pure Strategy NE

Existence of NE

Examples of Infinite Matrix Games

Pick the Largest Number: Two players simultaneously choose a natural number each. The player who has chosen the highest number wins and receives a payoff of 1 from the other player. If both players choose the same number, the outcome is a draw.

Examples of Infinite Matrix Games

Pick the Largest Number: Two players simultaneously choose a natural number each. The player who has chosen the highest number wins and receives a payoff of 1 from the other player. If both players choose the same number, the outcome is a draw.

P_2											
	0	1	1	1							
	-1	0	1	1							
P_1	-1	-1	0	1							
	-1	-1	-1	0							
	:	:	:	:							

6

Examples of Infinite Matrix Games

Consider the 2-player zero-sum game:

Mixed Strategy NE:

■ P₁ chooses y_i , i = 1, 2, such that $y_i \ge 0$, $\sum_{i=1}^2 y_i = 1$ ■ P₂ chooses z_j , j = 1, 2, ..., such that $z_j \ge 0$, $\sum_{j=1}^\infty z_j = 1$ Mixed Security Strategy of P₁?

Mixed Security Strategy of P1

Truncate the matrix to one comprised of k columns:

P_2										
P_1	2	1/2	1/3	1/4	1/5		1/k			
	0	1/2	2/3	3/4	4/5		(k-1)/k			

Mixed Security Strategy for P₁:
$$y_1 = \frac{k-1}{3k-2}, y_2 = \frac{2k-1}{3k-2}$$
Average Security Level for P₁: $\overline{V}_m = \frac{2k-2}{3k-2}$
Mixed Security Strategy for P₂: $z_1 = \frac{k-2}{3k-2}, z_k = \frac{2k}{3k-2}$
Average Security Level for P₂: $\underline{V}_m = \frac{2k-2}{3k-2}$

Mixed Security Strategy of P1 Truncate the matrix to one comprised of k columns: P_2 P_1 1/3 $1/4 \mid 1/5$ 1/k. . . (k-1)/k1/22/33/44/5. . . \Box In the Limit as $k \rightarrow \infty$: $y_{1}^{*} = \frac{1}{3}, y_{2}^{*} = \frac{2}{3}, z_{1}^{*} = \frac{1}{3}, z_{\infty}^{*} = \frac{2}{3}, \quad \overline{V}_{m} = \underline{V}_{m} = \frac{2}{3}$ The security level of P₂ cannot be achieved!

Existence of NE in Infinite Games

- □ P₂ cannot achieve its security level of $\frac{2}{3}$ as it cannot choose column ∞
- By choosing a sufficiently large column k, P₂ can secure an average lower value arbitrarily close to $\frac{2}{3}$!
- □ ε -mixed security strategy: The mixed security strategy employed when P₂chooses k such that $\underline{V}_m > \frac{2}{3} - \varepsilon$. This is also an ε -mixed saddle-point strategy
- □ Non-existence of a saddle point within the class of mixed strategies!
- □ Same effect occurs for a pure strategy saddle point in zero-sum games and for Nash equilibria in nonzero-sum games.

Definition:

For a given $\varepsilon \ge 0$, the pair $\{u_{\varepsilon}^{1^*}, u_{\varepsilon}^{2^*}\} \in U^1 \times U^2$ is called an ε -saddle point if

$$J(u_{\varepsilon}^{1^*}, u^2) - \varepsilon \leq J(u_{\varepsilon}^{1^*}, u_{\varepsilon}^{2^*}) \leq J(u^1, u_{\varepsilon}^{2^*}) + \varepsilon$$

for all $\{u^1, u^2\} \in U^1 \times U^2$.

e

Lower Value of a two person zero-sum infinite game:

$$\underline{V} = \sup_{u^2 \in U^2} \inf_{u^1 \in U^1} J(u^1, u^2)$$

Upper Value of a two person zero-sum infinite game:

$$\overline{V} = \inf_{u^1 \in U^1} \sup_{u^2 \in U^2} J(u^1, u^2)$$

If $\overline{V} = \underline{V}$, then $V = \overline{V} = \underline{V}$ is called the value of the game. **Theorem:**

A two-person zero-sum infinite game has a finite value if, and only if, for every $\varepsilon > 0$, an ε -saddle point exist

□ Proof : First, suppose that the game has a finite value $(V = \overline{V} = \underline{V})$. Then, given an $\varepsilon > 0$, one can find $u_{\varepsilon}^{1^*} \in U^1$ and $u_{\varepsilon}^{2^*} \in U^2$ such that

$$J(u^1, u_{\varepsilon}^{2^*}) > \underline{\mathrm{V}} - \frac{1}{2}\varepsilon \quad , \forall u^1 \in U$$

$$J(u_{\varepsilon}^{1^*}, u^2) < \overline{V} + \frac{1}{2}\varepsilon \quad , \forall u^2 \in U^2$$

which follow directly from the definitions of V_{-} and $\overline{V_{-}}$, respectively.

Now, since $V = \overline{V} = \underline{V}$, by adding ε to both sides of the first inequality we obtain

 $J(u^{1}, u_{\varepsilon}^{2^{*}}) + \varepsilon > V + \frac{1}{2}\varepsilon > J(u_{\varepsilon}^{1^{*}}, u_{\varepsilon}^{2^{*}}) , \forall u^{1} \in U^{1} \quad (i)$ where the latter inequality follows from the second inequality by letting $u^{2} = u_{\varepsilon}^{2^{*}}$.

Similarly, if we now add $-\varepsilon$ to both sides of the second inequality, and also make use of the first inequality with $u^1 = u_{\varepsilon}^{1^*}$, we obtain $J(u_{\varepsilon}^{1^*}, u^2) - \varepsilon < V - \frac{1}{2}\varepsilon < J(u_{\varepsilon}^{1^*}, u_{\varepsilon}^{2^*})$, $\forall u^2 \in U^2$ (ii)

If (i) and (ii) are collected together, the result is the set of inequalities

$$J(u_{\varepsilon}^{1^{*}}, u^{2}) - \varepsilon \leq J(u_{\varepsilon}^{1^{*}}, u_{\varepsilon}^{2^{*}}) \leq J(u^{1}, u_{\varepsilon}^{2^{*}}) + \varepsilon \qquad (\text{iii})$$

for all $\{u^1, u^2\} \in U^1 \times U^2$, which verifies the sufficiency part of the theorem.

Second, suppose that for every $\varepsilon > 0$, an ε saddle point exists, that is, a pair $\{u_{\varepsilon}^{1^*}, u_{\varepsilon}^{2^*}\} \in U^1 \times U^2$ can be found satisfying (iii) for all $u^1 \in U^1$ and $u^2 \in U^2$. Let the middle term be denoted as J_{ε} . We now show that the sequence $\{J_{\varepsilon_1}, J_{\varepsilon_2}, \ldots\}$, with $\varepsilon_1 > \varepsilon_2 > \ldots > 0$ and $\lim_{i \to \infty} \varepsilon_i = 0$ is Cauchy. Toward this end, let us first take $\mathcal{E} = \mathcal{E}_k$ and $\mathcal{E} = \mathcal{E}_j$, j > k, in subsequent order in (iii) and add the resulting two inequalities to $\int (u_{\varepsilon_{k}}^{1^{*}}, u^{2}) - J(u^{1}, u_{\varepsilon_{j}}^{2^{*}}) + J(u_{\varepsilon_{j}}^{1^{*}}, u^{2}) - J(u^{1}, u_{\varepsilon_{k}}^{2^{*}}) \leq 2(\varepsilon_{k} + \varepsilon_{j}) < 4\varepsilon_{k}$

15

Now, substituting first $\{u^1 = u_{\varepsilon_j}^{1^*}, u^2, u^2, u^2_{\varepsilon_k}\}$ and then $\{u^1 = u_{\varepsilon_k}^{1^*}, u^2 = u_{\varepsilon_j}^{2^*}\}$ the result is the set of inequalities

$$-4\varepsilon_k < J_{\varepsilon_k} - J_{\varepsilon_j} < 4\varepsilon_k$$

for any finite k and j, with j > k, which proves that $\{J_{\varepsilon_k}\}$ is indeed a Cauchy sequence. Hence, it has a limit in R, which is the value of the game.

It should be noted that, although the sequence $\{J_{\varepsilon_k}\}$ converges, the sequences $\{u_{\varepsilon_k}^{1^*}\}$ and $\{u_{\varepsilon_k}^{2^*}\}$ need not have limits.

E-NE solution for Nonzero-Sum Games

Definition:

For a given $\varepsilon > 0$, an N-tuple $\{u_{\varepsilon}^{1^*}, \dots, u_{\varepsilon}^{N^*}\} \in U^1 \times \dots \times U^N$ is called a pure ε -Nash Equilibrium solution if $J^i(u_{\varepsilon}^{1^*}, \dots, u_{\varepsilon}^{N^*}) \leq J(u_{\varepsilon}^{1^*}, \dots, u_{\varepsilon}^{i-1^*}, u^i, u_{\varepsilon}^{i+1^*}, \dots, u_{\varepsilon}^{N^*}) + \varepsilon, i \in N$

Definition:

We define a mixed strategy for \mathcal{P}_i as a probability distribution (probability measure) μ^i on U^i . Furthermore, $\mu^i \in M^i$, where M^i denotes the class of all such probability distributions (or measures).

E-NE in Mixed Strategies

Average Cost Function:

$$\overline{J}^{i}(\mu^{1},...,\mu^{N}) = \int_{U^{1}}...\int_{U^{N}} J^{i}(u^{1},...,u^{N}) d\mu^{1}(u^{1})...d\mu^{N}(u^{N})$$

Specialization to Semi-Infinite Bimatrix Case: $y_i, i = 1, ..., m$, such that $y_i \ge 0, \sum_{i=1}^m y_i = 1$, and $z_j, j = 1, 2, ...$ such that $z_j \ge 0, \sum_{j=1}^{\infty} z_j = 1$ $\overline{J}^1(y, z) = \sum_i \sum_j y_i a_{ij} z_j$ $\overline{J}^2(y, z) = \sum_i \sum_j y_i b_{ij} z_j$

assuming that the above sums are absolutely convergent.

*E***-NE** in Mixed Strategies

Theorem :

For each $\varepsilon > 0$, the semi-infinite bimatrix game (A;B), with $A = \{a_{ij}\}_{i=1j=1}^{m\infty}, B = \{b_{ij}\}_{i=1j=1}^{m\infty}, m < \infty$ and the entries a_{ij}, b_{ij} being bounded, admits an ε equilibrium solution in mixed strategies. **Sketch of Proof:**

• Let (\hat{y}, \hat{z}) be a mixed strategy equilibrium point of the finite bimatrix game with the truncated matrices

$$A_n = \{a_{ij}\}_{i=1}^{m}, B_n = \{b_{ij}\}_{i=1}^{m}$$

- Let $\overline{z} = (\hat{z}, 0, 0, ...)^T$
- It is easy to show that (\hat{y}, \hat{z}) is a mixed \mathcal{E} equilibrium solution for (A, B)

$\mathcal{E}\operatorname{-NE}$ in Mixed Strategies

Corollary :

Every bounded semi-infinite zero-sum matrix game has a value in the class of mixed strategies.

These results do not apply to infinite bimatrix games. (A counterexample will be shown in the previous section.)

Infinite Games

□ Zero sum games

- □ Non-zero sum games
- □ Infinite Games
 - Countably Infinite Actions
 - **Continuous Action Sets**
 - Introduction
 - **Reaction Curves and Pure Strategy NE**
 - **Existence of NE**

Examples of Games with Continuous Action Sets

□ Mixed Strategies: Players choose to play u_i with probability y_i ∈ [0,1]
 □ Stopping Time Games: An investor must decide when to sell a particular asset.

Examples of Games with Continuous Action Sets

□ Mixed Strategies: Players choose to play u_i with probability y_i ∈ [0,1]
 □ Stopping Time Games: An investor must decide when to sell a particular asset. The decision to be selected is a time t ∈ [0,∞)

Examples of Games with Continuous Action Sets

□ The Cournot Game: Firms 1 and 2 must choose to produce quantities u^1 and u^2 of some commodity. The market price is $p = c_1 - u^1 - u^2$ and the production costs are $c_2 u^i$, i = 1, 2

Reaction Curves

Definition:

In an N-person nonzero-sum game, let the minimum of the cost function of $P_i, J^i(u^i, u^{-i})$, with respect to $u^i \in U^i$ be attained for each $u^{-i} \in U^{-i}$. Then the optimal response or rational reaction set of $P_i, R^i(u^{-i}) \in U^i$, is defined by

$$R^{i}(u^{-i}) = \{ \xi \in \mathbf{U}^{i} : J^{i}(\xi, u^{-i}) \le J^{i}(u^{i}, u^{-i}) \quad \forall u^{i} \in \mathbf{U}^{i} \}$$

If $R^{i}(u^{-i})$ is a singleton for every $u^{-i} \in U^{-i}$, then it is called the reaction curve or reaction function of P_{i} .

Reaction Curves (Example)

□ The Cournot Game: Firms1and 2 must choose to produce quantities

 u^1 and u^2 of some commodity. The market price is $p = c_1 - u^1 - u^2$ and the production costs are $c_2 u^i$, i = 1, 2

□ The payoff functions are

$$J^{i}(u^{1}, u^{2}) = (c_{1} - u^{1} - u^{2})u^{i} - c_{2}u^{i}, i = 1, 2$$

□ The reaction curves are obtained as follows:

$$\frac{\partial J^{i}(u^{1}, u^{2})}{\partial u^{i}} = 0 \implies R^{i}(u^{-i}) = \frac{c_{1} - c_{2} - u^{-i}}{2}$$

Reaction Curves (Example)

The payoff functions are

27

$$J^{i}(u^{1}, u^{2}) = (c_{1} - u^{1} - u^{2})u^{i} - c_{2}u^{i}, i = 1, 2$$

□ The reaction curves are obtained as follows:

□ Pure Strategy NE solution: $u^{i*} = \frac{c_1 - c_2}{3}$

Pure Strategy NE

Pure strategy NE solution = intersection points of the reaction curves. (The Nash equilibrium solution must lie on both the reaction curves.)

□ Condition for uniqueness of the pure strategy NE solution: The reaction curves must have only one point of intersection

Reading Reaction Curves:

Reaction curves intersect at a single point: unique NE

 \square Reaction curves do not intersect: No NE or \mathcal{E} -NE

- □Reaction curves intersect at multiple points: multiple NE
- □ Reaction curves intersect along an interval: a continuum of NE

Stability of nonunique NE

Adjustment Scheme:

- $\square P_1$ and P_2 begin at a nonunique equilibrium (u_0^1, u_0^2)
- One player, say P_1 deviates to $(u_0^1 + \delta)$
- $\Box P_2$ observes this and reacts.
- $\square P_1$ reacts to P_2 's reaction and so on
- □ Possible Consequences:
- □ (Globally) Stable Equilibrium: Infinite sequence of moves converges to (u_0^1, u_0^2) fall $\delta \ge 0$. Implies uniqueness of NE.
- □ Locally Stable Equilibria: Infinite sequence of moves converges to (u_0^1, u_0^2) for $\delta \in \Delta$. Multiple such NE can exist.
- □ Unstable Equilibria: Infinite sequence of moves never converges to (u_0^1, u_0^2) for any $\delta \ge 0$.

Infinite Games

□ Zero sum games

- □ Non-zero sum games
- □ Infinite Games
 - Countably Infinite Actions

Continuous Action Sets

□ Introduction

□ Reaction Curves and Pure Strategy NE

Existence of NE

Existence of Pure Strategy NE

Existence of pure strategy NE = existence of well defined reaction functions with a common point of intersection.

Theorem:

- An N -person nonzero-sum game admits a Nash Equilibrium in pure strategies if, for each $i \in N$
- ${}^{\bullet}U^{i}$ is a closed, bounded and convex subset of a finite-dimensional Euclidean space
- $J^i: U^i \times U^{-i} \mapsto R$ is jointly continuous in all its arguments,
- J^i is strictly convex in u^i for every $u^{-i} \in U^{-i}$.

NE in Zero-sum Infinite Games

Theorem:

A two-person zero-sum infinite game admits a **unique** pure strategy NE if:

- U^1 and U^2 are closed, bounded (or effectively closed, bounded) and convex subsets of a finite dimensional space
- $J(u_1, u_2)$ is jointly continuous in its arguments,
- $J(u_1, u_2)$ is strictly convex in u^1 for every $u^2 \in U^2$.
- $J(u_1, u_2)$ is strictly concave in u^2 for every $u^1 \in U^1$.

NE in Mixed Strategies

Theorem:

An N -person nonzero-sum game admits a Nash Equilibrium with mixed strategies if:

- its finite-dimensional action spaces U^i are compact
- cost functional J_i are continuous on $U^1 \times U^2 \times \ldots \times U^N$
- Convexity not required.
- Extends directly to two-person zero-sum games and mixed strategy saddle-point equilibrium.
- □ Weakest conditions for a mixed strategy saddle point equilibrium: semi-continuity conditions (Glicksberg, 1950).

InfiniteDynamic Games

- □ Zero sum games
- □ Non-zero sum games
- □ Infinite Games
 - Countably Infinite Actions
 - Continuous Action Sets
 - □ Introduction
 - □ Reaction Curves and Pure Strategy NE
 - **Existence** of NE
- **Infinite Dynamic Games**

Static v/s Dynamic

What does 'dynamic' refer to?

- Multi-stage games: Players gain dynamic information throughout the decision process
- Stages/Levels/Time: These games require a notion of time
 Discrete-time Dynamic Games: Finite or countably infinite number of stages/levels of play
 - Continuous-time Dynamic Games: continuum of stages/levels of play

Examples of Infinite Dynamic Games Example 1

Examples of Infinite Dynamic Games Example 2

- A negotiation game: Alice negotiates a job with Google, after receiving an offer *r* from Yahoo. They use alternate bargaining.
 When Alice offers a, Google can accept and hire her, or reject and continue to bargain.
 - When Google offers g, Alice can accept and work for Google, reject and work for Yahoo, or reject and continue bargaining.
 What should Alice's offers had
 - □What should Alice's offer be?

Learning Each Other's Bargaining Power (Signalling)

