

Non-zero sum games

Material

- Dynamic Non-cooperative Game Theory: Second Edition
	- Chapter4: Sections 4:1–4:3.

Infinite Games

Zero sum games

Non-zero sum games

Infinite Games

Countably Infinite Actions

Continuous Action Sets

Introduction

Reaction Curves and Pure Strategy NE

Existence of NE

Examples of Infinite Matrix Games

Pick the Largest Number: Two players simultaneously choose a natural number each. The player who has chosen the highest number wins and receives a payoff of 1 from the other player. If both players choose the same number, the outcome is a draw.

Examples of Infinite Matrix Games

Pick the Largest Number: Two players simultaneously choose a natural number each. The player who has chosen the highest number wins and receives a payoff of 1 from the other player. If both players choose the same number, the outcome is a draw.

6

Examples of Infinite Matrix Games

Consider the 2-player zero-sum game:

Mixed Strategy NE:

 $\Box P_1$ chooses y_i , $i = 1, 2$, such that $\Box P_2$ chooses z_j , $j = 1, 2, \dots$, such that Mixed Security Strategy of P₁? y_i , $i = 1, 2$ $z_j, j = 1, 2, \dots$ 2 1 $y_i \geq 0, \sum y_i = 1$ *i* $y_i \geq 0, \sum y_i$ \equiv $\geq 0, \sum_{i} y_i =$ 1 $j \geq 0, \sum z_j = 1$ *j* $z_i \geq 0, \sum z_i$ ∞ $=$ $\sum_{j=1}^{n} 0$, $\sum_{j=1}^{n} z_j =$

Mixed Security Strategy of P1

Truncate the matrix to one comprised of k columns:

□ Mixed Security Strategy for P₁:
$$
y_1 = \frac{k-1}{3k-2}, y_2 = \frac{2k-1}{3k-2}
$$

\n□ Average Security Level for P₁:
$$
\overline{V}_m = \frac{2k-2}{3k-2}
$$

\n□ Mixed Security Strategy for P₂:
$$
z_1 = \frac{k-2}{3k-2}, z_k = \frac{2k}{3k-2}
$$

\n□ Average Security Level for P₂:
$$
\underline{V}_m = \frac{2k-2}{3k-2}
$$

Mixed Security Strategy of P1
\nTruncate the matrix to one comprised of k columns:
\n
$$
P_1
$$
\n
$$
P_1
$$
\n
$$
P_2
$$
\n
$$
P_1
$$
\n
$$
P_2
$$
\n
$$
P_2
$$
\n
$$
P_1
$$
\n
$$
P_1
$$
\n
$$
P_1
$$
\n
$$
P_2
$$
\n
$$
P_1
$$
\n
$$
P_1
$$
\n
$$
P_1
$$
\n
$$
P_2
$$
\n
$$
P_2
$$
\n
$$
P_1
$$
\n
$$
P_2
$$
\n
$$
P_2
$$
\n
$$
P_1
$$
\n
$$
P_
$$

Existence of NE in Infinite Games

- $\Box P_2$ cannot achieve its security level of $\frac{2}{3}$ as it cannot choose column ∞ 3
- \Box By choosing a sufficiently large column k, P_2 can secure an average lower value arbitrarily close to $\frac{2}{3}$! 3
- \Box ε -mixed security strategy: The mixed security strategy employed when P₂chooses k such that $L_m > \frac{2}{3} - \varepsilon$. This is also an ε -mixed saddle-point strategy $\widetilde{2}$ 3 $V_m > \frac{2}{3} - \varepsilon$. This is also an ε ${\cal E}$
- Non-existence of a saddle point within the class of mixed strategies!
- Same effect occurs for a pure strategy saddle point in zero-sum games and for Nash equilibria in nonzero-sum games.

Definition:

For a given $\varepsilon \geq 0$, the pair $\,\{u_\varepsilon^{1*}, u_\varepsilon^{2*}\} \,{\in}\, U^1 {\times} U^2$ is called an $\,\varepsilon$ -saddle point if

$$
J(u_{\varepsilon}^{1^*}, u^2) - \varepsilon \le J(u_{\varepsilon}^{1^*}, u_{\varepsilon}^{2^*}) \le J(u^1, u_{\varepsilon}^{2^*}) + \varepsilon
$$

for all $\{u^1, u^2\} \in U^1 \times U^2$.

Lower Value of a two person zero-sum infinite game:

$$
V = \sup_{u^2 \in U^2} \inf_{u^1 \in U^1} J(u^1, u^2)
$$

Upper Value of a two person zero-sum infinite game:

$$
\overline{V} = \inf_{u^1 \in U^1} \sup_{u^2 \in U^2} J(u^1, u^2)
$$

12

If $\overline{V} = \underline{V}$, then $V = \overline{V} = \underline{V}$ is called the value of the game. **Theorem:**

A two-person zero-sum infinite game has a finite value if, and only if, for every $\varepsilon\,{>}\,0,$ an $\varepsilon\,$ -saddle point exist

Proof : First, suppose that the game has a finite value ($V = V = V$). Then, given an $\varepsilon > 0$, one can find $u_\varepsilon^{1^*} \! \in \! U^1$ and $\; u_\varepsilon^{2^*} \! \in \! U^2$ such that

$$
J(u^1, u_\varepsilon^{2^*}) > \underline{V} - \frac{1}{2}\varepsilon \quad , \forall u^1 \in U^1
$$

$$
J(u_\varepsilon^{1^*}, u^2) < \overline{V} + \frac{1}{2}\varepsilon \quad , \forall u^2 \in U^2
$$

which follow directly from the definitions of V_{\perp} and V_{\parallel} , respectively.

Now, since $V = V = V$, by adding ε to both sides of the first inequality we obtain

(i) where the latter inequality follows from the second inequality by letting $u^2 = u_\varepsilon^{2^*}.$ $J(u^1, u_{\varepsilon}^{2^*}) + \varepsilon > V + \frac{1}{2} \varepsilon > J(u_{\varepsilon}^{1^*}, u_{\varepsilon}^{2^*}) \quad , \forall u^1 \in U^1$

Similarly, if we now add $-\varepsilon$ to both sides of the second inequality, and also make use of the first inequality with $u^1 = u^{1*}_\varepsilon$, we obtain $J(u_{\varepsilon}^{1*}, u^2) - \varepsilon < V - \frac{1}{2} \varepsilon < J(u_{\varepsilon}^{1*}, u_{\varepsilon}^{2*}) \quad , \forall u^2 \in U^2 \quad (ii)$

If (i) and (ii) are collected together, the result is the set of inequalities

$$
J(u_{\varepsilon}^{1^*}, u^2) - \varepsilon \le J(u_{\varepsilon}^{1^*}, u_{\varepsilon}^{2^*}) \le J(u^1, u_{\varepsilon}^{2^*}) + \varepsilon \qquad (iii)
$$

for all $\{u^1, u^2\} \in U^1 \times U^2$, which verifies the sufficiency part of the theorem.

Second, suppose that for every $\varepsilon > 0$, an ε saddle point exists, that is, a pair $\{u^{1*}_\varepsilon, u^{2*}_\varepsilon\}$ \in U^1 \times U^2 can be found satisfying (iii) for all u^1 \in U^1 and $u^2 \in U^2$. Let the middle term be denoted as J_ε . We now show that the sequence $\{J_{\varepsilon 1}, J_{\varepsilon 2}, ...\}$, with $\varepsilon_1 > \varepsilon_2 > ... > 0$ and $\lim_{i \to \infty} \varepsilon_i = 0$ is Cauchy. Toward this end, let us first take $\varepsilon = \varepsilon_k$ and $\varepsilon = \varepsilon_j$, $j > k$, in subsequent order in (iii) and add the resulting two inequalities to obtain $\rightarrow \infty$ \equiv

Now, substituting first $\{u^1 = u_{\varepsilon_j}^{1*}, u^2 = u_{\varepsilon_k}^{2*}\}$ and then $\{u^1 = u_{\varepsilon_k}^{1*}, u^2 = u_{\varepsilon_j}^{2*}\}$ the result is the set of inequalities

$$
-4\varepsilon_k < J_{\varepsilon_k} - J_{\varepsilon_j} < 4\varepsilon_k
$$

for any finite *k* and *j*, with $j > k$, which proves that $\{J_{\varepsilon_k}\}$ is indeed a Cauchy sequence. Hence, it has a limit in R, which is the value of the game.

It should be noted that, although the sequence $\{ {J}_{\varepsilon_k} \}$ converges, the sequences $\{u_{\varepsilon_k}^{\{1^{\ast}\}}\}$ and $\{u_{\varepsilon_k}^{\{2^{\ast}\}}\}$ need not have limits.

-NE solution for Nonzero-Sum Games

Definition:

For a given $\varepsilon > 0$, an N-tuple $\;\;\{\mu_{\,\varepsilon}^{\,1*},\dots,\mu_{\,\varepsilon}^{\,N\,*}\}\! \in\! U^{\,1} \!\times\! \dots \!\times\! U^{\,N}\!\;$ is called a pure $\,\varepsilon$ -Nash Equilibrium solution if $J^{i}(u_{c}^{1*},...,u_{c}^{N*})\leq J(u_{c}^{1*},...,u_{c}^{i-1*},u^{i},u_{c}^{i+1*},...,u_{c}^{N*})+\varepsilon,i\in\mathbb{N}$

Definition:

We define a mixed strategy for *P_i* as a probability distribution (probability measure) μ^i on U^i . Furthermore, $\mu^i \in M^i$, where M^i denotes the class of all such probability distributions (or measures).

-NE in Mixed Strategies

Average Cost Function:

$$
\overline{J}^{i}(\mu^{1},...,\mu^{N})=\int_{U^{1}}...\int_{U^{N}}J^{i}(u^{1},...,u^{N}) d \mu^{1}(u^{1})...d \mu^{N}(u^{N})
$$

Specialization to Semi-Infinite Bimatrix Case: *m* y_i , $i = 1,...,m$, such that $y_i \ge 0$, $\sum y_i = 1$, and z_j , $j = 1, 2,...$ such that $z_i \ge 0$, $\sum_{i=1}^{\infty} z_i = 1$ $i=1$ 1 $j \ge 0, \sum z_j = 1$ *j* $z_i \geq 0, \sum z_i$ ∞ $=$ $\geq 0, \sum_{j} z_j =$ $f^{1}(y,z) = \sum_{i} \sum_{j} y_{i} a_{ij} z_{j}$ *i j* $\bar{J}^1(y,z) = \sum_{i} \sum_{j} y_i a_{ij} z_j$ $\bar{J}^2(y,z) = \sum_{i} \sum_{j} y_i b_{ij} z_j$ *i j* $\bar{J}^2(y,z) = \sum \sum y_i b_{ij} z^i$

assuming that the above sums are absolutely convergent.

-NE in Mixed Strategies

Theorem :

For each $\varepsilon > 0$, the semi-infinite bimatrix game $(A;B)$, with $A = \{a_{ij}\}_{i=1}^{m}$ ∞ , $B = \{b_{ij}\}_{i=1}^{m}$ ∞ , $m < \infty$ and the entries a_{ij} , b_{ij} being bounded, admits an $\,\varepsilon\,$ equilibrium solution in mixed strategies. **Sketch of Proof:**

Let (\hat{y}, \hat{z}) be a mixed strategy equilibrium point of the finite bimatrix game with the truncated matrices

$$
A_n = \{a_{ij}\}_{i=1}^{m} , B_n = \{b_{ij}\}_{i=1}^{m} ,
$$

- **Let** $\bar{z} = (\hat{z}, 0, 0, \ldots)^T$
- 19 It is easy to show that (\hat{y}, \hat{z}) is a mixed Eequilibrium solution for (A, B)

-NE in Mixed Strategies

Corollary :

Every bounded semi-infinite zero-sum matrix game has a value in the class of mixed strategies.

These results do not apply to infinite bimatrix games. (A counterexample will be shown in the previous section.)

Infinite Games

Zero sum games

- Non-zero sum games
- **OInfinite Games**
	- Countably Infinite Actions
	- **Continuous Action Sets**
		- **Introduction**
		- **Reaction Curves and Pure Strategy NE**
		- **Existence of NE**

Examples of Games with Continuous Action Sets

 \Box Mixed Strategies: Players choose to play u_i with probability $y_i \in [0,1]$ Stopping Time Games: An investor must decide when to sell a particular asset.

Examples of Games with Continuous Action Sets

- \Box Mixed Strategies: Players choose to play u_i with probability $y_i \in [0,1]$
- Stopping Time Games: An investor must decide when to sell a particular asset. The decision to be selected is a time $\,t\in\lbrack0,\infty)$

Examples of Games with Continuous Action Sets

 The Cournot Game: Firms 1and 2must choose to produce quantities u^1 and u^2 of some commodity. The market price is and the production costs are $c_2 u^i$, $i = 1, 2$ $1 \tbinom{2}{x}$ u^2 of some commodity. The market price is $p = c_1 - u^1 - u^1$

Reaction Curves

Definition:

In an N-person nonzero-sum game, let the minimum of the cost function of P_i , $J^i(u^i, u^{-i})$, with respect to $u^i \in U^i$ be attained for each $u^{-i} \in U^{-i}$. Then the optimal response or rational reaction set of P_i , $R^i(u^{-i}) \in U^i$, is defined by

$$
R^{i}(u^{-i}) = \{ \xi \in U^{i} : J^{i}(\xi, u^{-i}) \leq J^{i}(u^{i}, u^{-i}) \quad \forall u^{i} \in U^{i} \}
$$

If $R^i(u^{-i})$ is a singleton for every $u^{-i} \in U^{-i}$, then it is called the reaction curve or reaction function of *Pi* .

Reaction Curves (Example)

The Cournot Game: Firms1and 2 must choose to produce quantities

 u^1 and u^2 of some commodity. The market price is and the production costs are $c_2 u^i$, $i = 1, 2$ $1 \tbinom{2}{x}$ u^2 of some commodity. The market price is $p = c_1 - u^1 - u^1$

The payoff functions are

$$
J^{i}(u^{1}, u^{2}) = (c_{1} - u^{1} - u^{2})u^{i} - c_{2} u^{i}, i = 1, 2
$$

The reaction curves are obtained as follows:

$$
\frac{\partial J^{i}(u^{1},u^{2})}{\partial u^{i}}=0 \Rightarrow R^{i}(u^{-i})=\frac{c_{1}-c_{2}-u^{-i}}{2}
$$

Reaction Curves (Example)

The payoff functions are

 $\widehat{\mathscr{O}}$

$$
J^{i}(u^{1},u^{2}) = (c_{1} - u^{1} - u^{2})u^{i} - c_{2}u^{i}, i = 1,2
$$

The reaction curves are obtained as follows:

Pure Strategy NE solution: $u^{i*} = \frac{c_1 + c_2}{3}$ 3 $i * C_1 - c$ $u^{i*} = \frac{c_1 - c_2}{c_2}$

Pure Strategy NE

- Pure strategy NE solution $=$ intersection points of the reaction curves. (The Nash equilibrium solution must lie on both the reaction curves.)
- Condition for uniqueness of the pure strategy NE solution: The reaction curves must have only one point of intersection
- Reading Reaction Curves:
	- Reaction curves intersect at a single point: unique NE
	- Reaction curves do not intersect: No NE or &-NE
	- Reaction curves intersect at multiple points: multiple NE
	- Reaction curves intersect along an interval: a continuum of NE

Stability of nonunique NE

Adjustment Scheme:

- $\blacksquare \mathbf{P}_1$ and \mathbf{P}_2 begin at a nonunique equilibrium $(\mathrm{u}_0^1, \mathrm{u}_0^2)$
- **O**ne player, say P₁ deviates to $(u_0^1 + \delta)$
- $\Box P_2$ observes this and reacts.
- $\Box P_1$ reacts to P_2 's reaction and so on
- Possible Consequences:
- (Globally) Stable Equilibrium: Infinite sequence of moves converges to (u_0^1, u_0^2) fall $\delta \ge 0$. Implies uniqueness of NE.
- Locally Stable Equilibria: Infinite sequence of moves converges to (u_0^1, u_0^2) for $\delta \in \Delta$. Multiple such NE can exist.
- Unstable Equilibria: Infinite sequence of moves never converges to (\mathbf{u}_0^1, u_0^2) for any $\delta \ge 0$.

Infinite Games

- Zero sum games
- Non-zero sum games
- **OInfinite Games**
	- Countably Infinite Actions

Continuous Action Sets

 \Box Introduction

Reaction Curves and Pure Strategy NE

Existence of NE

Existence of Pure Strategy NE

Existence of pure strategy $NE =$ existence of well defined reaction functions with a common point of intersection.

Theorem:

- An N -person nonzero-sum game admits a Nash Equilibrium in pure strategies if, for each $i\in N$
- $\blacksquare U^i$ is a closed, bounded and convex subset of a finite-dimensional Euclidean space
- \bullet $J^i: U^i \times U^{-i} \mapsto R$ is jointly continuous in all its arguments,
- *i J^{<i>i*} is strictly convex in u^i for every $u^{-i} \in U^{-i}$.

NE in Zero-sum Infinite Games

Theorem:

A two-person zero-sum infinite game admits a **unique** pure strategy NE if:

- \bullet U^1 and \bullet U^2 are closed, bounded (or effectively closed, bounded) and convex subsets of a finite dimensional space
- $J(u_1, u_2)$ is jointly continuous in its arguments,
- $J(u_1, u_2)$ is strictly convex in u^1 for every $u^2 \in U^2$.
- $J(u_1, u_2)$ is strictly concave in u^2 for every $u^1 \in U^1$.

NE in Mixed Strategies

Theorem:

An N -person nonzero-sum game admits a Nash Equilibrium with mixed strategies if:

- \blacksquare its finite-dimensional action spaces U^i are compact
- \blacksquare cost functional J_i are continuous on $U^1 \times U^2 \times ... \times U^N$
- Convexity not required.
- Extends directly to two-person zero-sum games and mixed strategy saddle-point equilibrium.
- Weakest conditions for a mixed strategy saddle point equilibrium: semi-continuity conditions (Glicksberg, 1950).

35

InfiniteDynamic Games

- **Q**Zero sum games
- Non-zero sum games
- Infinite Games
	- Countably Infinite Actions
	- **Q** Continuous Action Sets
		- **Introduction**
		- Reaction Curves and Pure Strategy NE
		- \Box Existence of NE
- **Infinite Dynamic Games**

Static v/s Dynamic

What does 'dynamic' refer to?

- Multi-stage games: Players gain dynamic information throughout the decision process
- Stages/Levels/Time: These games require a notion of time Discrete-time Dynamic Games: Finite or countably infinite number of stages/levels of play
	- Continuous-time Dynamic Games: continuum of stages/levels of play

Examples of Infinite Dynamic Games Example 1

■ Repeated Cournot Game: Firms1and 2 must choose to produce quantities u ¹ and u ² of some commodity. The market price is $p = c_1 - u^1 - u^2$ and the production costs are $c_2 u^i$, $i = 1, 2$. How should they refine their strategies in a repeated format game?

Examples of Infinite Dynamic Games Example 2

- A negotiation game: Alice negotiates a job with Google, after receiving an offer *r* from Yahoo. They use alternate bargaining. When Alice offers a, Google can accept and hire her, or reject and continue to bargain.
	- When Google offers g, Alice can accept and work for Google, reject and work for Yahoo, or reject and continue bargaining.
	- What should Alice's offer be?

Learning Each Other's Bargaining Power (Signalling)

