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Material

 Dynamic Non-cooperative Game Theory: Second Edition

 Chapter4: Sections 4:1–4:3.

Non-zero sum games
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Infinite Games
Countably Infinite Actions

Continuous Action Sets
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 Reaction Curves and Pure Strategy NE

 Existence of NE

Infinite Games
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Finite v/s Infinite

4

What does ‘infinite’ refer to?

Infinite Action Spaces:

Example 1: Countably infinite actions

Example 2: Continuous action sets 

Players choose actions 

Infinite Stages:

Example 1: Repeated games (Repeated prisoner’s dilemma)

Example 2: Infinite horizon games

u [0,1], ,u R  



Examples of Infinite Matrix Games
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Pick the Largest Number: Two players simultaneously choose a

natural number each. The player who has chosen the highest

number wins and receives a payoff of 1 from the other player. If

both players choose the same number, the outcome is a draw.



Examples of Infinite Matrix Games
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Pick the Largest Number: Two players simultaneously choose a

natural number each. The player who has chosen the highest

number wins and receives a payoff of 1 from the other player. If

both players choose the same number, the outcome is a draw.



Examples of Infinite Matrix Games
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Consider the 2-player zero-sum game:

Mixed Strategy NE:

P1 chooses                  ,such that  

P2 chooses                        ,  such that

Mixed Security Strategy of P1?  
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Examples of Infinite Matrix Games
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Consider the 2-player zero-sum game:



Mixed Security Strategy of P1
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Truncate the matrix to one comprised of k columns:

Mixed Security Strategy for P1 :

Average Security Level for P1 :

Mixed Security Strategy for P2 :

Average Security Level for P2 :
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Mixed Security Strategy of P1
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Truncate the matrix to one comprised of k columns:

In the Limit as             :    

The security level of P2 cannot be achieved!

* * * *
1 2 1

1 2 1 2 2
, , , ,
3 3 3 3 3

m my y z z V V     

k



Existence of NE in Infinite Games
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P2 cannot achieve its security level of         as it cannot choose 
column 

By choosing a sufficiently large column k, P2 can secure an average 
lower value arbitrarily close to       !

 -mixed security strategy: The mixed security strategy employed 
when P2chooses k such that                    . This is also an   -mixed 
saddle-point strategy

Non-existence of a saddle point within the class of mixed strategies!

Same effect occurs for a pure strategy saddle point in zero-sum 
games and for Nash equilibria in nonzero-sum games.


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-Saddle Point for Zero-Sum Games
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Definition:

For a given          , the pair                                is called an    -saddle

point if

for all                                 .

Lower Value of a two person zero-sum infinite game:

Upper Value of a two person zero-sum infinite game:

1* 2 1* 2* 1 2*( , ) ( , ) ( , )J u u J u u J u u       
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-Saddle Point for Zero-Sum Games 
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If            , then                        is called the value of the game.

Theorem:

A two-person zero-sum infinite game has a finite value if, and only if,

for every         , an    -saddle point exist

Proof : First, suppose that the game has a finite value (                  ) . 
Then, given an          , one can find               and                such that

which follow directly from the definitions of      and      , respectively. 

0 


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-Saddle Point for Zero-Sum Games 
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Now, since                    , by adding    to both sides of the first 
inequality we obtain 

(i)

where the latter inequality follows from the second inequality by 
letting                .

Similarly, if we now add      to both sides of the second inequality, and 
also make use of the first inequality with                 , we obtain

(ii)




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-Saddle Point for Zero-Sum Games 
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If (i) and (ii) are collected together, the result is the set of inequalities                                                     

(iii)

for all                             , which verifies the sufficiency part of the 
theorem.

Second, suppose that for every          , an    saddle point exists, that is, 
a pair                               can be found satisfying (iii) for all              
and               . Let the middle term be denoted as     . We now show 
that the sequence                      , with                            and                    
is Cauchy. Toward this end, let us first take            and                      , 
in subsequent order in (iii) and add the resulting two inequalities to 
obtain



J 


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-Saddle Point for Zero-Sum Games 
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Now, substituting first                   ,            and then                              
the result is the set of inequalities                                                                                        

for any finite k and j, with           , which proves that            is indeed a 
Cauchy sequence. Hence, it has a limit in R, which is the value of the 
game.

It should be noted that, although the sequence            converges, the 
sequences            and           need not have limits.


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-NE solution for Nonzero-Sum Games
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Definition:

For a given          , an N-tuple                                                 is

called a pure    -Nash Equilibrium solution if

Definition:

We define a mixed strategy for Pi as a probability distribution

(probability measure)        on        . Furthermore,                , where     
denotes the class of all such probability distributions (or measures).



0 



1* * 1{ , , }N Nu u U U     
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-NE in Mixed Strategies
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Average Cost Function:

Specialization to Semi-Infinite Bimatrix Case:

,such that                                 ,and                         such 
that                               

assuming that the above sums are absolutely convergent.


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-NE in Mixed Strategies
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Theorem :

For each            , the semi-infinite bimatrix game (A;B) , with                               

and the entries            being 
bounded, admits an     equilibrium solution in mixed strategies.

Sketch of Proof:

 Let              be a mixed strategy equilibrium point of the finite 
bimatrix game with the truncated matrices

 Let

 It is easy to show that            is a mixed  -equilibrium solution for



ˆ ˆ( , )y z
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-NE in Mixed Strategies
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Corollary :

Every bounded semi-infinite zero-sum matrix game has a value in the 
class of mixed strategies.

These results do not apply to infinite bimatrix games. (A

counterexample will be shown in the previous section.)


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Mixed Strategies: Players choose to play       with probability

 Stopping Time Games: An investor must decide when to sell a 
particular asset.    

Examples of Games with Continuous
Action Sets

22

iu [0,1]iy 



Mixed Strategies: Players choose to play       with probability

 Stopping Time Games: An investor must decide when to sell a 
particular asset. The decision to be selected is a time    

Examples of Games with Continuous
Action Sets

23

iu [0,1]iy 

[0, )t  



The Cournot Game: Firms 1and 2must choose to produce  quantities

and      of some commodity. The market price is                          
and the production costs are 

Examples of Games with Continuous
Action Sets

24

1u
1 2

1p c u u  2u

2 , 1,2ic u i 



Definition:

In an N-person nonzero-sum game, let the minimum of the cost 
function of Pi , with respect to                be attained 
for each               .  Then the optimal response or rational reaction 
set of Pi , is defined by

If               is a singleton for every                  , then it is called the

reaction curve or reaction function of Pi .

Reaction Curves
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, ( , )i i iJ u u 

, ( ) Ui i iR u  
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( )i iR u  Ui iu  



The Cournot Game: Firms1and 2 must choose to produce  quantities

and      of some commodity. The market price is                          
and the production costs are

The payoff functions are 

The reaction curves are obtained as follows:

Reaction Curves (Example)
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The payoff functions are 

The reaction curves are obtained as follows:

Pure Strategy NE solution:

Reaction Curves (Example)
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Pure strategy NE solution = intersection points of the reaction 
curves. (The Nash equilibrium solution must lie on both the 
reaction curves.)

Condition for uniqueness of the pure strategy NE solution: The 
reaction curves must have only one point of intersection

Reading Reaction Curves:

Reaction curves intersect at a single point: unique NE

Reaction curves do not intersect: No NE or   -NE

Reaction curves intersect at multiple points: multiple NE

 Reaction curves intersect along an interval: a continuum of NE

Pure Strategy NE

28
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Adjustment Scheme:
P1 and P2 begin at a nonunique equilibrium 
One player, say P1 deviates to
P2 observes this and reacts.
P1 reacts to P2’s reaction and so on …..

Possible Consequences:

(Globally) Stable Equilibrium: Infinite sequence of moves 
converges to                fall          . Implies uniqueness of NE. 

Locally Stable Equilibria: Infinite sequence of moves converges 
to               for           . Multiple such NE can exist.

Unstable Equilibria: Infinite sequence of moves never converges 
to               for any          .

Stability of nonunique NE
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Existence of pure strategy NE = existence of well defined 
reaction functions with a common point of intersection.

Theorem:

An N -person nonzero-sum game admits a Nash Equilibrium in 
pure strategies if, for each

 is a closed, bounded and convex subset of a finite-dimensional 
Euclidean space

 is jointly continuous in all its arguments,

 is strictly convex in     for every

Existence of Pure Strategy NE

31

.i iu U 

:i i iJ U U R 

iU

i N

iuiJ



Theorem:

A two-person zero-sum infinite game admits a unique pure 
strategy NE if:

 and        are closed, bounded (or effectively closed, bounded) 
and convex subsets of a finite dimensional space

 is jointly continuous in its arguments,

 is strictly convex in     for every

 is strictly concave in     for every     

NE in Zero-sum Infinite Games
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Theorem:

An N -person nonzero-sum game admits a Nash Equilibrium with 
mixed strategies if:

 its finite-dimensional action spaces      are compact 

 cost functional Ji are continuous on              

Convexity not required.

Extends directly to two-person zero-sum games and mixed 
strategy saddle-point equilibrium.

Weakest conditions for a mixed strategy saddle point 
equilibrium: semi-continuity conditions (Glicksberg, 1950).

NE in Mixed Strategies
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Existence of NE for games with continuous action sets: Does this

picture still apply?

Continuous Action Sets
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Existence of NE for games with continuous action sets: Does this

picture still apply?

Continuous Action Sets
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InfiniteDynamic Games
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What does ‘dynamic’ refer to?

 Multi-stage games: Players gain dynamic information 
throughout the decision process

Stages/Levels/Time: These games require a notion of time
Discrete-time Dynamic Games: Finite or countably infinite number of 

stages/levels of play

Continuous-time Dynamic Games: continuum of stages/levels of play

Static v/s Dynamic
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Repeated Cournot Game: Firms1and 2 must choose to produce  
quantities     and    of some commodity. The market price is           

and the production costs are                       . How should they 
refine their strategies in a repeated format game?

Examples of Infinite Dynamic Games
Example 1
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A negotiation game: Alice negotiates a job with Google, after 
receiving an offer r from Yahoo. They use alternate bargaining.

When Alice offers a, Google can accept and hire her, or reject and 
continue to bargain.

When Google offers g, Alice can accept and work for Google, 
reject and work for Yahoo, or reject and continue bargaining.

What should Alice’s offer be?

Examples of Infinite Dynamic Games
Example 2

39

Learning Each Other’s 
Bargaining Power (Signalling)


