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Material

 Dynamic Non-cooperative Game Theory: Second Edition

 Chapter5: Sections 5:1–5:3.
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Basic elements of the loop model:

Set of Players: 

Stages:

State Space:

Action Space:  

Functionals in the loop model:

State Equation: Describes the state evolution

Strategies: Pi uses strategy

Cost Functional: The real-valued cost for Pi is given by

Loop model (recap)
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A few typical information structures (IS):

Open Loop IS:

Closed-Loop Perfect State IS:

Closed-Loop Imperfect State IS:

Memoryless IS:

Feedback IS:

One step delayed IS:

Examples of Information Structures
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Dynamic games are often formulated also in continuous time, 
which means that

 the state x(t) varies continuously with time on a given interval
, and

 the players continuously select actions ui(t) on              , which 
determine the state's evolution.

When the state x(t) is an n-vector of real numbers whose evolution is
determined by a differential equation, the game is called a differential
game.We consider here differential games with dynamics of the form

(1)

Continuous-time differential games
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for which each player Pi,                       wants to minimize a cost of 
the form

(2)

For such games we shall also consider open-loop policies of the form

and (perfect) state-feedback policies of the form

Continuous-time differential games
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Example: Consider the zebra in the lake game  where 

the player P1 is a zebra that swims with a speed of  Vzebra in a 
circular lake with radius R, and

the player P2 is a lion that runs along the perimeter of the lake 
with maximum speed of Vlion > Vzebra .

Objective: The two players have opposite objectives: 

1. The zebra wants to get to the shore of the lake without being 
caught coming out of the water.

2. The lion wants to be at the precise position where the zebra 
leaves the lake.

Example (zebra in the lake)
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Policies: In this game it is assumed that each player constantly 
sees the other and can react instantaneously to the current 
position/velocity of the other player. This game only makes sense 
in closed loop if the lion can see the zebra and uses this to decide 
where to run, because otherwise the lion has no chance of ever 
catching the zebra. 

Example (zebra in the lake)
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Denoting by (Xzebra, Yzebra) the position of the zebra and by     
zebra the orientation, we have that 

and denoting by        and         the (angular) position and 
velocity of the lion, respectively, we have that

Defining a state vector

Example (zebra in the lake)
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the equations of position the zebra and lion  can be written as in 
(1), where the actions of the players are:

If we assume that the zebra wants to get out of the lake as soon 
as possible without being captured, the zebra's cost is of the 
form

This is a zero-sum game and therefore the lion wants to 
maximize J1, or equivalently minimize J2 := - J1.

Example (zebra in the lake)
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A common trick that is used to write such a cost as in an 
integral form such as (2) is to freeze the state when the zebra 
reaches the shore, which amounts to replacing state space

This is a zero-sum game and therefore the lion wants to 
maximize J1, or equivalently minimize J2 := - J1.

Example (zebra in the lake)
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 and then defining

Where

This game is only meaningful in the context of state-feedback
policies, because the lion basically has no chance of capturing the
zebra unless the lion can see the zebra.

Example (zebra in the lake)
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One-player discrete-time games:

We start by discussing solution methods for one-player dynamic 
games, which are simple optimizations. In the context of discrete-
time dynamic games, this corresponds to dynamics of the form

We assume a finite horizon (           ) stage additive costs of the 
form

Dynamic games in discrete time
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that the (only) player wants to minimize using either a open-loop policy

or a state-feedback policy

Discrete-time cost-to-go

Suppose that the player finds herself at some state x at stage l. This state 
would perhaps not be the optimal place to be at this stage, but 
nevertheless she would like to estimate the minimum cost that she 
should expect, if she were to play optimally from this point on so as to 
minimize the costs incurred in the remaining stages.

Dynamic games in discrete time
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This scenario motivates defining the cost-to-go from state             
at time                          by

with the sequence                                           starting at  

and satisfying the dynamics

Discrete-time cost-to-go
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Computing the cost-to-go V1 (x1) from the initial state x1 at the 
first stage l = 1 essentially amounts to minimizing the cost (4) 
for the dynamics (3). This observation leads to two important 
conclusions:

1) Regardless of the information structure considered (open loop, 
state feedback, or other), it is not possible to obtain a cost (4) 
lower than V1 (x1) .This is because in the minimization in (5) we 
place no constraints on what information may or may not be 
available to compute the optimal uk

2) If the infimum in (5) is achieved for some specific sequence

Discrete-time cost-to-go
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that can be computed before the game starts just with knowledge 
of x1, then this sequence of actions provides an optimal open-loop 
policy

In this case, V1 (x1) is precisely equal to the smallest value that can 
be achieved for (4).

Discrete-time cost-to-go
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Discrete-time dynamic programming

Dynamic programming is a computationally efficient recursive 
technique that can be used to compute the cost-to-go. For the 
last stage K, the cost-to-go VK(x) is simply the minimum of

over the possible actions uK, for a game that starts with xK = x 
and therefore

Discrete-time dynamic programming
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Therefore, for each state x, we can compute VK(x) by solving a 
single-parameter optimization over the set UK. For the previous 
stages l < K, we have that

Discrete-time dynamic programming

21

,

,
1

1 1,
1

( ) inf (x ,u )

inf ( (x ,u ) (x ,u ))

inf ( (x ,u ) inf (x ,u ))

l l K K

l l K K

l l l l K K

K

l k k K
u U u U

k l

K

l l k k K
u U u U

k l

K

l l k k K
u U u U u U

k l

V x g

g g

g g

 


 
 

    
 



 

 















where in the first equality we used the fact that we must set xl = x 
to compute Vl(x) and in the second we used the fact that gl(x, ul) 
does not depend on ul+1,…, uK. However

is precisely the minimum cost for a game starting at stage l + 1 
with the state

which is precisely the cost-to-go                         . We therefore 
conclude that

Discrete-time dynamic programming
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 This shows that if we know the function Vl+1, then we can 
compute each Vl(x) by solving a single-parameter optimization 
over the set Ul. Moreover, this optimization, produces the 
optimal action    to be used when the state is at xl.

 It is convenient to define

which allow us to re-write both (5) and (6) using the formula:

Discrete-time dynamic programming
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