Lo 3L o i

Game Theory

yodi azlg> oGNS igaolS g 3 g (oo

&

‘51;_)‘/:;'1"’&”3%,

/

‘ InfiniteDynamiC Games \ @
i

Material

® Dynamic Non-cooperative Game Theory: Second Edition

® Chapter5: Sections 5:1-5:3.

e An Introductory Course in Non-cooperative Game Theory
® Chapter 15,16

InfiniteDynamic Games

JZero sum games
(L Non-zero sum games
J Infinite Games

dInfinite Dynamic Games
LDynamic games in discrete time
Information structures
[Continuous-time differential games
UDiscrete-time dynamic programming

L Continuous-time dynamic programming

&

- R)
b 2
J’\.'/L'Jm‘]vf’i i3]

Dynamic games 1n discrete time (recap) @

One-player discrete-time games:

We start by discussing solution methods for one—player dynamic
games, which are simple optimizations. In the context of discrete-

time dynamic games, this corresponds to dynamics of the form

X, = f (x ,u) Vke{l2..K} @
—— —— - -

state "dynamics" at state P, 's action

atstage k+1 stagek atstage k at stage k

We assume a finite horizon (K <o) stage additive costs of the

J :Zg(xk’uk) (2)

form

o

/

{Open—loop optimization } @

L

¢ ek
% I Pl e
UL gl W

We can use the following procedure to compute the open-loop
policy 7 °" that minimizing the cost (2) for the dynamics (1)
1) Compute the cost-to-go using a backward iteration starting from =K

and proceeding backward in time until | =1 using

Viea(X) =0, Vi(x) = inf (g,(x ,u;)+V,(fi(x,u)), VxeX

U| €U|

» We are assuming that the infimum of Y, (XT’ U,) +V|+1(fl (XT’ U,)
is achieved at some point Uy € U, . If this is not the case, then
this procedure fails. When the infimum is achieved at multiple

points, any one can be used in step 2.

~

/

{Open-loop optimization J

o

2) Compute the sequence of actions
u €U,u,el,,...,u, eld,,
that minimize V, (x,) using a forward iteration starting from k = 1

and proceeding forward in time until £ = K;

u; =arg min(gk(xz’uk) +Vk+1(fk (X:’uk))1 X:+1 — fk (X:,U:),

Uk EUk

3)Finally, the optimal open-loop policy 7 s given by
ror(x) =0, v ()=, e,y (%) = Uy

X

X

: I
[State—feedback optimization } @

Suppose that one uses the optimal open-loop policy 7" defined by

open loop optimization, which selects the actions

u, =7>-(x)=u,, vke{l,2..K}

In this case, the pre-computed states X: defined by step 2 in
open loop optimization match precisely the states x, that would be
measured during the game. Therefore we would get precisely the
same minimum value V, (x,) for the cost (2), if we were using a

state-feedback policy yFBdefined by
/P (x,) =arg min(g, (%, ,U) 4V, (f, (x,.0,)), ¥k €2 K} (3)

Uk EUk

A4
computed using the measured state X

o y

/

&tate—feedback optimization \ @

When all the g, (X, ,u,) +V, ., (f, (X, ,U,) have a minimum for
some U, €U, , this state-feedback policy 7 ™ that can do as well

. . OL . .o .
as the optimal open-loop policy 7 . Since it is not possible to
obtain a value for (2) lower thanV, (x,), we conclude that (3) is

an optimal state-feedback policy.

/
Dynamic Programming Example
Affine-Quadratic Problems

e State Equation: zr11 = Arxr + Brug + ¢k
e Cost Function: %Zle (IE——I—IQk‘f‘lmk‘f‘l + unguk)

Proposition
The optimal control policy for the above problem is given by

uy, = i (zk) = —PeSk+1AkTk — Pr(Sk+1 + Sk+1Ck)
for all k € K, where

Py = (Ry, + By Sp41Bi) ' By
Sk = Qi+ Al Spi1(I — BePiSki1) Ak, Ski1 = Qi1
S — A;—(I — BkPkSk+1)T(Sk+1 -+ S;c+1c;c) - 5k+1 = 0

o

/

Computational Complexity

o

For large state-spaces X , the computational effort needed to

compute the cost-to-go at all stages can be very large. One may
then wonder if it is worth to use dynamic programing,
instead of doing an exhaustive search.To decide which
option is best one needs to estimate the computation involved
in exploring each option. We shall do this assuming finite state-
spaces and finite action spaces.

d Exhaustive search: Suppose that a game has K stages and that

at the stage I the number of actions available to the player is
equal to fU | ‘ . An exhaustive search over all possible selections

of actions requires cornparing the costs associated as many as
options as ‘Ul‘x‘UZ‘X...x‘UK‘

/
{Computational complexity } @

dDynamic Programing : At a particular stage / and for a
specific value of the state x, computing the cost-to-go V/(x)

requires comparing among all the actions available, which
roughly requires making ‘U | ‘ comparisons. Since this has to be
done for every state x and for every stage VI e{l,2,...,K} the
total number of comparisons is roughly equal to

\Ul\x\mﬂuz\x\;@h...ﬂuK\x\ZK\

where we are denoting by‘ A ‘ the total number of possible states
at the stage I. By comparing Exhaustive search with Dynamic
Programing we see that dynamic programing can result in
significant savings provided that the size of the spate space is small
when compared to Exhaustive search .

o

/

Bt 2
Sy l? s

{Computational complexity (Example) }

o

d Tic-Tac-Toe: Consider a (silly) version of the Tic-Tac-Toe
game in which the same player places all the marks. An
exhaustive search among all possible ways to play would
have to consider 9 possible ways to place the first x, 8 possible
way to place the subsequent o, 7 possible ways to place the

second x, etc., leading to a total of

O01=9x8x7x...x1=362880

distinct options that must be compared.

~

/

~
Computational Complexity (Example) l @

For dynamic programing, the total number of comparisons
needed is computed inTable below and turns out to be about 19
times smaller what would be needed for an exhaustive search.
In larger games, the difference between the two approaches is
even more spectacular. Essentially, this happens because many

different sequences of actions collapse to the same state.

number of x's number of c's | e Lde| | |Xe] = |[de]

0 0 1 D 9

1 0 9 B 72

1 1 0 x 8§ =72 7 504
2 1 {‘,} %] = 252 b 1512
2 2 (5) = (] =756 | 5 3780
3 2 J) = 1260 | 4 5040
3 3 [f} [} —1680 | 3 | 5040
4 3 24) = 1260 | 2 2520
4 4 (3) = (j) =630 | 1 630
5 | ﬁ} = ‘IEh 0 0

Total number of comparisons needed

10107

/

InfiniteDynamiC Games

JZero sum games
(L Non-zero sum games
J Infinite Games

dInfinite Dynamic Games
LDynamic games in discrete time
dInformation structures
[Continuous-time differential games
dDiscrete-time dynamic programming

L Continuous-time dynamic programming

&

- R)
b, i :
e 7

/
[One-—player Continuous-time } @

differential games

Consider now a one-player continuous-time differential game

with dynamics of the form

X)) = 1 (t X(t) U(t)), Vte[0,T] (4)
state game t|me current P, sactlon
derivative ynamics state at time t

with state X (t) e R " initialized at a given X (O) = Xq. For every time
t [0, T] , the action u(t) is required to belong to a given action space
U. We assume a finite horizon (T < 00) integral cost of the form

g(t,x(t)u()dt +q(x(T)) ()

—
cost along trajctory final cost

o'.—..—|

o

: I
[One-—player Continuous-time } @

differential games

Sz s

that the (only) player wants to minimize either using an open-loop

policy o
u)=y"(t,x(0)) vtel0,T]

or a (perfect) state-feedback policy

ut)=»"(@t,x@t)) Vvte[0,T]

1 Continuous-time cost-to-go

The definition of cost-to-go for differential games follows the same
scenario used for discrete-time games: A player finds herself at some
state x at time 7 and wants to estimate the minimum cost that she
should expect, if she were to play so as to minimize the cost incurred
from this point forwards until the end of the game.

© y

/

I Continuous-time cost-to-go l @
Sy 13 74

Formally, the cost-to-go from state x at time 7 by

u(t)eu vte[r,T]

V (r,x)= Inf]‘g(t,x(t),u(t))dt +q(x(T) (6)

with the state X (t),Vt €[z,T] initialized at
X (7t)=X

and satisfying the dynamics

X =f (t,x(t),u(t)), vt e{r,T },

L y

[Computing the cost-to-go V(0,x,) from the initial state x at

time ;—(essentially amounts to minimizing the cost (5) for

the dynamics (4). This observation leads to two important

conclusions

1) Regardless of the information structure considered (open loop,
state feedback, or other), it is not possible to obtain a cost (5)
lower than V(0,x,) . This is because in the minimization in (6) we
place no constraints on what information may or may not be

available to compute the optimal u (t),Vt €[z,T.]

o

2) It the infimum in (6) is achieved for for some specitic signal

u(t)eU, Vie(r,T]
that can be computed before the game starts just with knowledge

of x,, then this action signal provides an optimal open-loop

policy j/OL
u*(t)=7/OL(t,XO) Vtelr, T]

J Also in continuous-time it is possible to compute the cost-to-go

somewhat recursively. For the final time T, the cost-to-go V(T x)
is simply given by
V (T, x)=q(x(T))=q(x)

dbecause for 7 =T the integral term in (6) disappears and the
game starts (and ends) precisely at x(T) = x.

Consider now some time 7 <T and pick some small positive
constant h so that 7+ N is still smaller than T. Then

V(z,X):= Inf]g(t, X(t),u(t))dt +q(x(T))

u(t)eU ,vte[r,T]

o

V(z,X) =

Inf]g(t, X(t),u(t))dt+q(x(T))

u(t)eU ,vte[r,T]

7+h

u(t)el.iJI,qV-fe[r,T]J‘ g(t,x(t)v,u(t))d’g +] g(t,x(t),u(t)zdt+q(x(T)2

 independent of u(t),Vte[z+h,T] r+h depends on all u(t), Vte[z,T]

7+h

inf (j g(t, x(t),u(t))dt +

u(t)eU ,vte[r,r+h]

T

u(t)eu ,i‘VI][Z[Z'+h,T] T.L g (t’ X(t)’ U(’[))dt T Q(X(T)))

time dynami @

d Recognizing that the "inner'" infimum is precisely the cost-to- go
from the state X (z +h)at time 7+ N, we can re-write this

equations compactly as
7+h

Vi(rx)= inf ([gEx@uE)dt+V (z+hx (r+h)
[Subtracting V (7,X) =V (7, X(7)) from both sides and dividing

both sides by h > 0, we can further re-write the above equation

. " (%T]hg(t,x(t),U(t))dt +V (z'+h,X(TJr:h))—V (z',X))

u(t)el ,vte[r,z+h)

T

(7)

© y

[Since the left hand side must be equal to zero for every h e (0, T—7)
, the limit of the right hand side as h — 0 must also be equal to

zero. If we optimistically assume that the limit of the infimum is

the same as the infimum of the limit and also that all limits

exist, we could use the following equalities

7+h

im= [g€ x OO =g (X (7))

IirnV (r+h,x(z+h))=V (z,x) dV (z,x (7))
h—0 h - dT

v (g, Tx (1)) oV (2;()(() ¢ (z.% (£),u (7))

© y

dto transtorm (7) into the so-called Hamilton-Jacobi-
Bellman (HJB) equation:

oV (7, X) N oV (7, X) f(r

0=inf(g(z,x,u)+ X,u)) Vrel[0,T],xeR"

ueV ot OX
It turns out that this equation is indeed quite useful to compute
the cost-to-go:
Theorem (Hamilton-Jacobi-Bellman). Any continuously

difterentiable function V/ (7,x) that satisties the Hamilton-

Jacobi-Bellman equation with

V (T, x) =q(x), VXxeR"

o

is equal to the cost-to-go V (7, X). In addition, if the infimum in

the Hamilton-Jacobi-Bellman equation is always achieved at some

point in U, we have that:

1.For any given x,, an optimal open-loop policy s given by

7o (t, %) =u (1), Vte[0,T]
with u*(t) obtained from solving

oV (z, X (1))

u (t) =arg ming(z,x (t),u) + f (7, X (t),u)

ued

X (1) = f(z,x (t),u (1)), vt [0, T], X (0) = X,

© y

2.An optimal (time consistent) state-feedback policy ¥ s given by

772 (t, x(t)) =arg min g(z, x(t),u) + N (g,xx(t)) f(z,x(t),u) VtelO,T]

ueU
Either of the above optimal policies leads to an optimal cost equal to
V(0, x,).
[Open-loop and state-feedback information structures are

"optimal," in the sense that it is not possible to achieve a cost

lower than V(0, x,) , regardless of the information structure.

© y

Proof of Theorem: Let U (t) and x (t) Vte[0,T]bea trajectory

arising from either the open-loop or the state-feedback policies and
letU(t) and X(t), Vt €[0, T] be another arbitrary trajectory. To

prove optimality, we need to show that the latter trajectory cannot

lead to a cost lower than the former.

Since V (7,X) satisfies the Hamilton-]Jacobi-Bellman equation and
u"(t) achieves the infimum in the Hamilton-Jacobi-Bellman
equation, for every vt [0, T],we have that

oV (z, X (1)) N oV (t,x (1))

P PV F(t,x (t),u))

0= LQI(g(t’X*(t)’u)Jr

gt x @)+ XD VOXO) ¢y w1 @

@ ot OX

However, since U(t) does not necessarily achieve the infimum, we
have that

0= Lrgllj(g(t,i(t),u)Jr

oV (t,X(t)) N oV (t,X(t))
OX

< g(t,x(t),a(t) + 2 (taf v) , oV (té;f“» f(4X(),T) ()

Integrating both side of (8) and (9) over the interval [0, T], we

conclude that

0={(g(t,x"(t),u"(t)) +

F(t,X(t),u))

oV (t,x (1)) N oV (t,x (1))
ot OX

< [(a(t.x @), T1) + 2 (tﬁ’f(t» LN (gx XO) ¢ ¢ %0, T0)) dt

© y

f(t,x (t),u (t)))dt

OQ—-'—|

from which we obtain

0=] g(t,x (t),u” (t))dt+V (T,x (T))-V(0,x,)

]‘
0
Using boundary condition , two conclusions can be drawn from

here: First, the signal U(t)does not lead to a cost smaller than that

of u™(t), because

<1 g(t,x(t),u(t)dt +V(T,x(T))-V(0,x,)

[9t (),u" @) dt+ (X (T)) < [g(t, X(0), T(M)) dt +q(x(T))

o

Second, V(0,x,) is equal to the optimal cost obtained with u*(2),

because

V(0,%) = [g(t,x"(t),u”(®) dt+q(x"(T))

If we had carry out the above proof on an interval [z, T] with initial
state X(7) = X, we would have concluded that V (7, X) is the

(optimal) value of the cost-to-go from state x at time 7.

1In a open-loop setting both u™(t) and X" (t),Vt [0, T] are pre-

computed before the game starts.

-

