
اميرحسين نيكوفرد: ارائه كننده
مهندسي برق و كامپيوتر دانشگاه خواجه نصير



Material

 Dynamic Non-cooperative Game Theory: Second Edition
 Chapter5: Sections 5:1–5:3.

 An Introductory Course in Non-cooperative Game Theory
 Chapter  15,16

InfiniteDynamic Games

2



Zero sum games

Non-zero sum games

Infinite Games

Infinite Dynamic Games
Dynamic games in discrete time
Information structures
Continuous-time differential games
Discrete-time dynamic programming
Continuous-time dynamic programming

InfiniteDynamic Games

3



One-player discrete-time games:

We start by discussing solution methods for one-player dynamic 
games, which are simple optimizations. In the context of discrete-
time dynamic games, this corresponds to dynamics of the form

We assume a finite horizon (           ) stage additive costs of the 
form

Dynamic games in discrete time (recap)

4

1

(x ,u ) (2)
K

k k
k

J g




   
1

1

" " '
1

( , ) , k {1,2,...,K}, (1)k k k k

state dynamics at state P s action
at stage k stage k at stage k at stage k

x f x u



  

K  



We can use the following procedure to compute the open-loop 
policy       that minimizing the cost (2) for the dynamics (1)

1) Compute the cost-to-go using a backward iteration starting from 

and proceeding backward in time until          using

We are assuming that the infimum of                                           
is achieved at some point              . If this is not the case, then 
this procedure fails. When the infimum is achieved at multiple 
points, any one can be used in step 2.

Open-loop optimization

5

l K

1l 

OL

1 1( ) 0, ( ) inf ( (x ,u ) ( ( , )), x X
l l

K l l l l l lu U
V x V x g V f x u 

    

* *
1(x ,u ) ( (x , ))l l l l l l lg V f u

k ku U



2) Compute the sequence of actions

that minimize Vi (xi) using a forward iteration starting from k = 1 
and proceeding forward in time until k = K:

3)Finally, the optimal open-loop policy is given by

Open-loop optimization

6

1 2
* * *

1 1 1 2 1( ) : , ( ) : , , ( ) :K
OL OL OL

Kx u x u x u    

* * * * * * *
1 1 1 1arg min( (x ,u ) ( ( , )), ( , ),

k k

k k k k k k k k k k k k
u U

u g V f x u x f x u x x 


   

OL

* * *
1 1 2 2, , , ,K Ku U u U u U  



Suppose that one uses the optimal open-loop policy       defined by 
open loop optimization, which selects the actions 

In this case, the pre-computed states          defined by step 2 in 
open loop optimization match precisely the states xk that would be 
measured during the game. Therefore we would get precisely the 
same minimum value V1 (x1) for the cost (2), if we were using a 
state-feedback policy      defined by

State-feedback optimization

7

OL

*
1( ) : , {1,2,...,K}k

OL
k ku x u k   

FB

*
kx

1

    

( ) arg min ( (x ,u ) ( ( , )), {1,2,...,K} (3)k

k
k

k computed using the measured state x

FB
k k k k k k k k

u U
x g V f x u k 


   



When all the                                                 have a minimum for 
some , this state-feedback policy       that can do as well 
as the optimal open-loop policy       . Since it is not possible to 
obtain a value for (2) lower than V1 (x1), we conclude that (3) is 
an optimal state-feedback policy.

State-feedback optimization

8

OL

1(x ,u ) ( ( , )k k k k k k kg V f x u
FBk ku U



Dynamic Programming Example
Affine-Quadratic Problems

9



For large state-spaces     , the computational effort needed to 
compute the cost-to-go at all stages can be very large. One may 
then wonder if it is worth to use dynamic programing, 
instead of doing an exhaustive search. To decide which 
option is best one needs to estimate the computation involved 
in exploring each option. We shall do this assuming finite state-
spaces and finite action spaces.

Exhaustive search: Suppose that a game has K stages and that 
at the stage l the number of actions available to the player is 
equal to        .  An exhaustive search over all possible selections 
of actions requires comparing the costs associated as many as 
options as

Computational complexity

10



lU

1 2 KU U U  



Dynamic Programing : At a particular stage l and for a 
specific value of the state x, computing the cost-to-go Vl(x) 
requires comparing among all the actions available, which 
roughly requires making        comparisons. Since this has to be 
done for every state x and for every stage                         , the 
total number of comparisons is roughly equal to

where we are denoting by       the total number of possible states 
at the stage l. By comparing Exhaustive search with Dynamic 
Programing we see that dynamic programing can result in 
significant savings provided that the size of the spate space is small 
when compared to Exhaustive search .

Computational complexity

11

{1,2,...,K}l 
lU

1 1 2 2 K KU U U       

l



 Tic-Tac-Toe: Consider a (silly) version of the Tic-Tac-Toe 
game in which the same player places all the marks. An 
exhaustive search among all possible ways to play would 
have to consider 9 possible ways to place the first x, 8 possible 
way to place the subsequent o, 7 possible ways to  place the 
second  x, etc., leading to a total of

distinct options that must be compared.

Computational complexity (Example)

12

9! 9 8 7 1 362880     



 For dynamic programing, the total number of comparisons 
needed is computed in Table below and turns out to be about 19 
times smaller what would be needed for an exhaustive search. 
In larger games, the difference between the two approaches is 
even more spectacular. Essentially, this happens because many 
different sequences of actions collapse to the same state.

Computational complexity (Example)

13



Zero sum games

Non-zero sum games

Infinite Games

Infinite Dynamic Games
Dynamic games in discrete time
Information structures
Continuous-time differential games
Discrete-time dynamic programming
Continuous-time dynamic programming

InfiniteDynamic Games

14



Consider now a one-player continuous-time differential game 
with dynamics of the form

with state                   initialized at a given                  . For every time 

, the action u(t) is required to belong to a given action space 
U.  We assume a finite horizon (            ) integral cost of the form

One-player Continuous-time 
differential games

15

[0,T]t
( ) nx t R

    
1 '

( ) ( , ( ), ( ) ), t [0,T] (4)
game timestate current P s actiondynamicsderivative state at time t

x t f t x t u t  

0(0)x x

T  

0 cos cos

( , ( ), ( )) ( ( )) (5)
T

t along trajctory final t

J g t x t u t dt q x T  



that the (only) player wants to minimize either using an open-loop
policy

or a (perfect) state-feedback policy

Continuous-time cost-to-go
The definition of cost-to-go for differential games follows the same 
scenario used for discrete-time games: A player finds herself at some 
state x at time    and wants to estimate the minimum cost that she 
should expect, if she were to play so as to minimize the cost incurred 
from this point forwards until the end of the game.

One-player Continuous-time 
differential games

16

( ) ( , (0)) t [0,T]OLu t t x  

( ) ( , ( )) t [0,T]FBu t t x t  





Formally, the cost-to-go from state x at time    by

with the state initialized at

and satisfying the dynamics

Continuous-time cost-to-go

17

(t,x(t),u(t)) , { , },x f t T  

( ) , [ , ]
( , ) : inf ( , ( ), ( )) ( ( ) (6)

T

u t U t T
V x g t x t u t dt q x T





  

 

( ), [ , ]x t t T 



( ) xx  



Computing the cost-to-go V(0,x0) from the initial state x0 at 
time             essentially amounts to minimizing the cost (5) for 
the dynamics (4). This observation leads to two important 
conclusions

1) Regardless of the information structure considered (open loop, 
state feedback, or other), it is not possible to obtain a cost (5) 
lower than V(0,x0) . This is because in the minimization in (6) we 
place no constraints on what information may or may not be 
available to compute the optimal                        .

Continuous-time cost-to-go

18

0 

( ), [ , ]u t t T 



2) If the infimum in (6) is achieved for for some specific signal

that can be computed before the game starts just with knowledge 
of x0, then this action signal provides an optimal open-loop 
policy 

Continuous-time cost-to-go

19

*
0( ) ( , ) t [ ,T]OLu t t x   

OL

*( ) , t [ ,T]u t U   



Also in continuous-time it is possible to compute the cost-to-go 
somewhat recursively. For the final time T, the cost-to-go V(T,x) 
is simply given by

because for            the integral term in (6) disappears and the 
game starts (and ends) precisely at x(T) = x.

Consider now some time          and pick some small positive 
constant h so that          is still smaller than T. Then

Continuous-time dynamic programming

20

(T, ) ( ( )) ( )V x q x T q x 

T 

T 
h 

( ) , [ , ]
( , ) : inf ( , ( ), ( )) ( ( ))

T

u t U t T
V x g t x t u t dt q x T





  

 



Continuous-time dynamic programming

21

   

( ) , [ , ]

( ) , [ , ]
, [ , ] [  , , ]

(

( , ) : inf ( , ( ), ( )) ( ( ))

inf ( , ( ), ( )) ( , ( ), ( )) ( ( ))

inf

independent of u t

T

u t U t T

h

depends on al

T

u t U t T
ht h T t T

u t

l u t

V x g t x t u t dt q x T

g t x t u t dt g t x t u t dt q x T







  


  



  
    

 

  





  

) , [ , ]

( ) , [ , ]

( ( , ( ), ( ))

inf ( , ( ), ( )) ( ( )))

h

U t h

T

u t U t h T
h

g t x t u t dt

g t x t u t dt q x T



 







   

   












Recognizing that the "inner" infimum is precisely the cost-to-go 
from the state at time          , we can re-write this 
equations compactly as

Subtracting                                  from both sides and dividing 
both sides by h > 0, we can further re-write the above equation

Continuous-time dynamic programming

22

( ) , [ , )
( , ) : inf ( ( , ( ), ( )) ( , ( )))

h

u t U t h
V x g t x t u t dt V h x h



 


  


   
   

h ( )x h 

( , ) ( , ( ))V x V x  

( ) , [ , )

1 ( , ( )) ( , )0 inf ( ( , ( ), ( )) )

(7)

h

u t U t h

V h x h V xg t x t u t dt
h h



 


  

   

  
 



Since the left hand side must be equal to zero for every 
, the limit of the right hand side as must also be equal to 
zero. If we optimistically assume that the limit of the infimum is 
the same as the infimum of the limit and also that all limits 
exist, we could use the following equalities

Continuous-time dynamic programming

23

(0,T )h  

0

0

1lim ( , ( ), ( )) ( , ( ), ( ))

( , ( )) ( , ) ( , ( ))lim

( , ( )) ( , ( )) ( , ( ), ( ))

h

h

h

g t x t u t dt g x u
h
V h x h V x dV x

h d
V x V x f x u

x





  

    


      










  


 
 

 



0h



to transform (7) into the so-called Hamilton-Jacobi-
Bellman (HJB) equation:

It turns out that this equation is indeed quite useful to compute 
the cost-to-go:

Theorem (Hamilton-Jacobi-Bellman). Any continuously 
differentiable function                 that satisfies the Hamilton-
Jacobi-Bellman equation  with

Continuous-time dynamic programming

24

( , ) ( , )0 inf ( ( , , ) ( , , )) [0,T],x Rn

u U

V x V xg x u f x u
x

   


 
     

 

( , )V x

(T, ) ( ), x R nV x q x  



is equal to the cost-to-go             . In addition, if the infimum in 
the Hamilton-Jacobi-Bellman equation is always achieved at some 
point in U, we have that:

1.For any given x0, an optimal open-loop policy       is given by 

with           obtained from solving

Continuous-time dynamic programming

25

( , )V x

*( )u t

OL
*

0( , ) : ( ), t [0,T]OL t x u t   

*
* * *

* * * *
0

( , (t))( ) arg min ( , (t), ) ( , (t), )

(t) ( , (t), ( )), [0,T], x (0)
u U

V xu t g x u f x u
x

x f x u t t x

 





 


   



2.An optimal (time consistent) state-feedback policy      is given by

Either of the above optimal policies leads to an optimal cost equal to 
V(0, x0).

Open-loop and state-feedback information structures are 
"optimal," in the sense that it is not possible to achieve a cost 
lower than V(0, x0) , regardless of the information structure.

Continuous-time dynamic programming

26

FB

( , (t))( , ( )) arg min ( , (t), ) ( , (t), ) t [0,T]FB

u U

V xt x t g x u f x u
x

  



   





Proof of Theorem: Let                                             be a trajectory 
arising from either the open-loop or the state-feedback policies and 
let                                          be another arbitrary trajectory. To 
prove optimality, we need to show that the latter trajectory cannot 
lead to a cost lower than the former.

Since                satisfies the Hamilton-Jacobi-Bellman equation and 
u*(t) achieves the infimum in the Hamilton-Jacobi-Bellman 
equation, for every ,we have that

Continuous-time dynamic programming

27

* *( ) and ( ) t [0,T]u t x t  

( ) and ( ), t [0,T]u t x t  

( , )V x

t [0,T] 
* *

* *

* *
* * * *

( , ( )) ( , ( ))0 inf ( ( , ( ), ) ( , ( ), ))

( , ( )) ( , ( ))( , ( ), ( )) ( , ( ), ( )) (8)

u U

V x t V t x tg t x t u f t x t u
x

V t x t V t x tg t x t u t f t x t u t
t x




 
  

 
 

  
 



However, since         does not necessarily achieve the infimum, we 
have that

Integrating both side of (8) and (9) over the interval           , we 
conclude that

Continuous-time dynamic programming

28

[0,T]

( , ( )) ( , ( ))0 inf ( ( , ( ), ) ( , ( ), ))

( , ( )) ( , ( ))( , ( ), ( )) ( , ( ), ( )) (9)

u U

V t x t V t x tg t x t u f t x t u
t x

V t x t V t x tg t x t u t f t x t u t
t x



 
  

 
 

  
 

( )u t

* *
* * * *

0

0

( , ( )) ( , ( ))0 ( ( , ( ), ( )) ( , ( ), ( )))

( , ( )) ( , ( ))( ( , ( ), ( )) ( , ( ), ( )))dt

T

T

V t x t V t x tg t x t u t f t x t u t dt
t x

V t x t V x tg t x t u t f t x t u t
t x



 
  

 

 
  

 







from which we obtain

Using boundary condition , two conclusions can be drawn from 
here: First, the signal does not lead to a cost smaller than that 
of u*(t), because

Continuous-time dynamic programming

29

( )u t

* * *
0

0

0
0

0 ( , ( ), ( ))dt ( , ( )) (0, )

( , ( ), ( ))dt ( , ( )) (0, )

T

T

g t x t u t V T x T V x

g t x t u t V T x T V x

  

  





* * *

0 0

( , ( ), ( ))dt ( ( )) ( , ( ), ( ))dt ( ( ))
T T

g t x t u t q x T g t x t u t q x T   



Second, V(0,x0) is equal to the optimal cost obtained with u*(t), 
because

If we had carry out the above proof on an interval          with initial 
state               , we would have concluded that is the 
(optimal) value of the cost-to-go from state x at time   .

In a open-loop setting both                                             are pre-
computed before the game starts.

Continuous-time dynamic programming

30

( ) xx  

* * *
0

0

(0, ) ( , ( ), ( ))dt ( ( ))
T

V x g t x t u t q x T 

[ ,T]
( , )V x


* *( ) and ( ), t [0,T]u t x t  


