
امیرحسین نیکوفرد: ارائه کننده
مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Material

 Dynamic Non-cooperative Game Theory: Second Edition

 Chapter5: Sections 5:5 and Chapter6: Sections 6:2

 An Introductory Course in Non-cooperative Game Theory

 Chapter 16,17

InfiniteDynamic Games

2

Zero sum games

Non-zero sum games

 Infinite Games

 Infinite Dynamic Games

Dynamic games in discrete time

Information structures

Continuous-time differential games

Discrete-time dynamic programming

Continuous-time dynamic programming

Discrete-time dynamic programming for zero sum games

InfiniteDynamic Games

3

Consider now a one-player continuous-time differential game
with the usual dynamics

and initialized at a given x(0) = x0, but with an integral cost with
variable horizon:

where is the first time at which the state x(t) enters a closed
set or in case x(t) never enters .

Differential games with variable
termination time

4

endT

1 '

() (, (), ()), () , () , t 0 (1)n

game timestate current P s action
dynamicsderivative state at time t

x t f t x t u t x t R u t U

T

0 cos cos

(, (), ()) (T , (T)) (2)
end

end end

t along trajctory final t

J g t x t u t dt q x

n
end R

endT end

 For this game, the cost-to-go from state x at time is defined by

where the state x(t), satisfies the dynamics

and denotes the first time at which x(t) enters the closed set

When we compute for some , we have
and therefore

Differential games with variable
termination time

5

() ,
(,) : inf (, (), ()) (, ()) (3)

endT

end end
u t U t

V x g t x t u t dt q T x T

t

(t, x(t),u(t)) ,x f t () xx

endT end

endx (,x)V
endT

(,x) q(,x), 0, (4)endV x

instead of the boundary condition in Continuous-time dynamic
programming with fixed termination time. However, it turns out
that the Hamilton-Jacobi-Bellman equation is still the same and
we have the following result:

Theorem : Any continuously differentiable function that
satisfies the Hamilton-Jacobi-Bellman equation with

is equal to the cost-to-go . In addition, if the infimum in
the Hamilton-Jacobi-Bellman equation is always achieved at some
point in U, we have that:

Differential games with variable
termination time

6

(,)V x

(,x) q(,x), 0, endV x

(,)V x

1.For any given x0, an optimal open-loop policy is given by

with obtained from solving

2.An optimal (time consistent) state-feedback policy is given
by

Either of the above optimal policies leads to an optimal cost equal
to V(0, x0).

Differential games with variable
termination time

7

*()u t

OL
*

0(,) : (), t [0,T]OL t x u t

*
* * *

* * * *
0

(, (t))
() arg min (t, (t),) (, (t),)

(t) (, (t), ()), [0,T], x (0)

u U

end

V t x
u t g x u f t x u

x

x f x u t t x

FB

(, (t))
(, ()) arg min (, (t),) (, (t),) t [0,T]FB

end
u U

V x
t x t g x u f x u

x

The Hamilton-Jacobi-Bellman equation is a partial differential
equation (PDE) and (4) can be viewed as a boundary condition
for this PDE

When we can find a continuously differentiable solution to this
PDE that satisfies the appropriate boundary condition, we
automatically obtain the cost-to-go. Unfortunately, solving a PDE
is often difficult to solve and many times the HJB equation does
not have continuously differentiable solutions

Open-loop and state-feedback information structures are
"optimal," in the sense that it is not possible to achieve a cost
lower thanV(0, x0), regardless of the information structure.

Differential games with variable
termination time

8

Proof of Theorem: Let be a trajectory
arising from either the open-loop or the state-feedback policies and
let be another arbitrary trajectory. To
prove optimality, we need to show that the latter trajectory cannot
lead to a cost lower than the former.

Since satisfies the Hamilton-Jacobi-Bellman equation and
u*(t) achieves the infimum in the Hamilton-Jacobi-Bellman
equation, for every ,we have that

Differential games with variable
termination time

9

* *() and () t 0u t x t

() and (), t 0u t x t

(,)V x

t [0,T]
* *

* *

* *
* * * *

(, ()) (, ())
0 inf ((, (),) (, (),))

(, ()) (, ())
(, (), ()) (, (), ()) (5)

u U

V x t V t x t
g t x t u f t x t u

x

V t x t V t x t
g t x t u t f t x t u t

t x

However, since does not necessarily achieve the infimum, we
have that

Let and denote the times at which
and respectively, enter the set . Integrating both side of (5)
and (6) over the intervals and , respectively.

Differential games with variable
termination time

10

(, ()) (, ())
0 inf ((, (),) (, (),))

(, ()) (, ())
(, (), ()) (, (), ()) (6)

u U

V t x t V t x t
g t x t u f t x t u

t x

V t x t V t x t
g t x t u t f t x t u t

t x

()u t

* [0,]endT [0,]endT *()x t

()x t end

[0,]endT*[0,]endT

we conclude that

Differential games with variable
termination time

11

*

* *
* * * *

0

(t, (t))

0

(, (t))

(, ()) (, ())
0 ((, (), ()) (, (), ()))

(, ()) (, ())
((, (), ()) (, (), ()))dt

end

end

T

dV x

dt

T

dV t x

dt

V t x t V t x t
g t x t u t f t x t u t dt

t x

V t x t V x t
g t x t u t f t x t u t

t x

from which we obtain

Using boundary condition , two conclusions can be drawn from here:
First, the signal does not lead to a cost smaller than that of u*(t),
because

Differential games with variable
termination time

12

()u t

* * *
0

0

0

0

0 (, (), ())dt (, ()) (0,)

(, (), ())dt (, ()) (0,)

end

end

T

end end

T

end end

g t x t u t V T x T V x

g t x t u t V T x T V x

* * *

0

0

(, (), ())dt (, ())

(, (), ())dt (, ())

end

end

T

end end

T

end end

g t x t u t q T x T

g t x t u t q T x T

Second, V(0,x0) is equal to the optimal cost obtained with u*(t),
because

If we had carry out the above proof on an interval with initial
state , we would have concluded that is the
(optimal) value of the cost-to-go from state x at time .

In a open-loop setting both are pre-
computed before the game starts.

Both the open-loop and the state-feedback policies lead precisely
to the same trajectory.

Differential games with variable
termination time

13

() xx

* * *
0

0

(0,) (, (), ())dt (, ())
endT

end endV x g t x t u t q T x T

[,T]
(,)V x

* *() and (), t [0,]endu t x t T

Zero sum games

Non-zero sum games

 Infinite Games

 Infinite Dynamic Games

Dynamic games in discrete time

Information structures

Continuous-time differential games

Discrete-time dynamic programming

Continuous-time dynamic programming

Discrete-time dynamic programming for zero sum games

InfiniteDynamic Games

14

Zero-sum dynamic games in discrete time:

We now discuss solution methods for two-player zero-sum
dynamic games in discrete time, which corresponds to dynamics
of the form

starting at some initial state x1 in the state space . At each time k,
P1's action uk is required to belong to an action space and P2's
action dk is required to belong to an action space .We assume a
finite horizon () stage additive costs of the form

Dynamic games in discrete time

15

1

(x ,u ,d) (7)
K

k k k
k

J g

1 2

1

" " ' '
1

(, ,) , k {1,2,...,K}k k k k k

entry node dynamics at entry node P s action P s action at
at stage k stage k at stage k at stage k stage k

x f x u d

K

kU

kD

that P1 wants to minimize and P2 wants to maximize. In this part
we consider a state-feedback information structure, which
correspond to policies of the form

Suppose that for a given state-feedback policy for P1 and a given
state-feedback policy for P2, we denote by ,the
corresponding value of the cost (7). Our goal is to find a saddle-
point pair of equilibrium policies for which

Dynamic games in discrete time

16

() , , (), k {1,2,...,K},k k k k k ku x d x

 (,)J

* *(,)

* * * *
1 2(,) (,) (,), , ,J J J

where and denote the sets of all state-feedback policies for
P1 and P2, respectively.Re-writing previous equation as

we conclude that if was known we could obtain from the
following single-player optimization

Dynamic games in discrete time

17

1

*

1

* * *(,) min (,),J J

2

2

* * *(,) max (,)J J

*

* *
1

1

*
1

(,) : (x ,u , (x))

(, , (x))

K

k k k k
k

k k k k k k

minimize over the cost

subje

J g

x fc xt to the dynamics u

In view of what we saw in Lecture 14, an optimal state-feedback
policy could be constructed first using a backward iteration to
compute the cost-to-go for P1 using

and then

Moreover, the minimum is given by

Dynamic games in discrete time

18

1(x)kV

*

1 1 * 1 *
1 1(x) 0, (x) inf ((x,u , (x)) ((, , ())))

, {1,2,...,K} (8)

k k
K k k k k k k k k

u U
V V g V f x u x

k

* * *
1(x) arg min((x,u , (x)) ((, , ())))

, {1,2,...,K} (9)

k k

k k k k k k k k
u U

g V f x u x

k

* *J(,)

1
1 1(x)V

Similarly, if was known we could obtain an optimal state-
feedback policy from the following single-player optimization

Note: We only derived the dynamic programming equations for
single-player minimizations, but for single-player maximizations
analogous formulas are still valid, provided that we replace all
infima by suprema

Dynamic games in discrete time

19

*
*

* *
2

1

*
1

(,) : (x , (x),)

(,

(x),)

K

k k k k
k

k k k k k k

maximize over the cost

subject to the dynamics

J g d

x f x d

In view of what we saw in Lecture 14, an optimal state-feedback
policy could be constructed first using a backward iteration to
compute the cost-to-go for P2 using

and then

Moreover, the minimum is given by

Dynamic games in discrete time

20

2 (x)kV

2 2 * 2 *
1 1(x) 0, (x) sup ((x, (x),) ((, (x), ())))

, {1,2,...,K} (10)

k k

K k k k k k k k k
d D

V V g d V f x d x

k

* * 2 *
1(x) arg max((x, (x),) ((, (x), ())))

, {1,2,...,K} (11)

k k

k k k k k k k k
d D

g d V f x d x

k

* *J(,)

1
2 1(x)V

*

The key to finding the saddle-point pair of equilibrium policies
is to realize that it is possible to construct a pair of state-feedback
policies for which the four equations (8), (9), (10), (11) all hold.

To see how this can be clone, consider the costs-to-go ,
and state-feedback policies at the last stage. For (8), (9),
(10), and (11) to hold we need that

Discrete-time dynamic programming

21

* *(,)

2 (x)KV
1 (x)KV

* *,K K

1 *(x) inf ((x,u , (x)))
K K

K K K K
u U

V g

 * *(x) arg min((x,u , (x)))
K K

K K K K
u U

g

2 *(x) sup ((x, (x),))
K K

K K K K
d D

V g d

 * *(x) arg max((x, (x),))
K K

K K K K
d D

g d

which can be re-written equivalently

Since the right-hand side of the top and bottom equalities are the
same, we conclude that . Moreover, this shows that
the pair must be a saddle-point
equilibrium for the zero-sum game with outcome

Discrete-time dynamic programming

22

1 * * *(x) (x, (x), (x)) (x,u , (x))K K K K K K K K KV g g u U

(x,u ,)K K Kg d

1 * * *(x) (x, (x), (x)) (x, (x),)K K K K K K K K KV g g d d D

1 1(x) (x)K KV V
* *((x), (x))K K K KU D

and actions and for the minimizer and maximizer,
respectively. Moreover, must be precisely equal to
the value of this game. In view of the results that we saw for zero-
sum games, this will only be possible if security policies exist and
the security levels for both players are equal to the value of the
game, i.e.,

Consider now the costs-to-go and state-feedback
policies at stage K - 1. For (8), (9), (10), and (11) to
hold we need that

Discrete-time dynamic programming

23

K Ku U

1 2(x) (x) (x)

(x) min sup (x,u ,) max inf (x,u ,)
K K K KK KK K

K K K

K K K K K K K
u U u Ud Dd D

V V V

V g d g d

K Kd D
1 2(x) (x)K KV V

1 2
1 1,K KV V

* *
1 1,K K

and so we now conclude that the pair
must be a saddle-point equilibrium for the zero-sum game with
outcome

Discrete-time dynamic programming

24

1 1

1 * *
1 1 1 1 1 1 1(x) inf ((x,u , (x)) ((, , ())))

K K
K K K K K K K K

u U
V g V f x u x

1 1

* * *
1 1 1 1 1 1 1(x) arg min((x,u , (x)) ((, , ())))

K K

K K K K K K K K
u U

g V f x u x

1 1

2 * *
1 1 1 1 1 1 1(x) sup ((x, (x),) ((, (x), ())))

K K

K K K K K K K K
d D

V g d V f x d x

1 1

* * *
1 1 1 1 1(x) arg max((x, (x),) ((, (x), ())))

K K

K k K K K k K K
d D

g d V f x d x

* *
1 1 1 1((x), ())K K K Kx U D

1 1 1 1 1 1(x, ,) ((, , ()))K K K K K K Kg u d V f x u d x

and actions and for the minimizer and
maximizer, respectively. Moreover, must be
precisely equal to the value of this game. Continuing this
reasoning backwards in time all the way to the first stage, we
obtain the following result:

Theorem: Assume that we can recursively compute functions
, , such that we have
that

Discrete-time dynamic programming

25

1 1K Ku U
1 1K Kd D

1 2
1 1(x) (x)K KV V

1 2(x), (x), , (x)KV V V x , k {1,2,...,K}

1

1

(x) : min sup ((x, ,) ((, , ())))

max inf ((x, ,) ((, , ()))) (12)

k k
k k

k kk k

k k k k k k k k
u U d D

k k k k k k k
u Ud D

V g u d V f x u d x

g u d V f x u d x

where

Then the pair of policies defined as follows is a saddle-
point equilibrium in state-feedback policies:

.Moreover, the value of the game is equal
to V1(x1).

Discrete-time dynamic programming

26

1(x) 0 ,xKV

* *(,)

*
1(x) arg min((x, ,) ((, , ()))) (13)

k k

k k k k k k k k
u U

g u d V f x u d x

*
1(x) arg max((x, ,) ((, , ()))) (14)

k k

k k k k k k k k
d D

g u d V f x u d x

x , k {1,2,...,K}

we actually conclude that

1) P2 cannot get a reward larger than V1 (x1) against ,
regardless of the information structure available to P2, and

2) P1 cannot get a cost smaller than V1 (x1) against ,
regardless of the information structure available to P1.

In practice, this means that and are "extremely
safe" policies for P1 and P2, respectively, since they guarantee a
level of reward regardless of the information structure for the
other player.

Discrete-time dynamic programming

27

*(x)k

* (x)k

*(x)k
* (x)k

For games with finite state spaces and finite actions spaces, the
backwards iteration in (12) can be implemented very efficiently in
MATLAB. To this effect, suppose that we enumerate all states so
that the state-space can be viewed as

and that we enumerate all actions so that the action spaces can be
viewed as

For simplicity, we shall assume that all states can occur at every
stage and that all actions are also available at every stage.

Solving finite zero-sum games with
MATLAB

28

: {1,2,..., }n

: {1,2,..., }UU n D : {1,2,..., }Dn

In this case, each function fk(x, u, d) and gk(x, u, d) that define the
game dynamics and the stage-cost, respectively, can be
represented by a three-dimensional tensor. On the
other hand, each Vk(x) can be represented by a columns
vector with one row per state. Suppose then that the following
variables are available within MATLAB.

F is a cell-array with K elements, each equal to an
three-dimensional matrix so that F{k} represents the game
dynamics function

G is a cell-array with K elements, each equal to an
three-dimensional matrix so that G{k} represents the stage-
cost function

Solving finite zero-sum games with
MATLAB

29

U Dn n n

1n

U Dn n n

 , x ,u U,d D,k, , {1,2,...,K}.kf x u d

U Dn n n

 , x ,u U,d D,k, , {1,2,...,K}.kg x u d

With these definitions, we can construct Vk(x) in (12) very
efficiently using the following MATLAB code

V{K+1}=zeros(size(G{K},1),1);

for k=K:-1:1

Vminmax=min (max (G{k}+V{k+1} (F{k}) , [] , 3) , [] , 2) ;
Vmaxmin=max (min (G{k }+V{k+1} (F{k}), [] , 2) , [] , 3) ;

if any(Vminmax-=Vmaxmin)

error('Saddle-point cannot be found')

end

V{k}=Vminmax;

end

Solving finite zero-sum games with
MATLAB

30

After running this code, the following variable as been created:

V is a cell-array with K + 1 elements, each equal to an
columns vector so that V{k}represents

For a given state x at stage k, the optimal actions u and d given by
(13)-(14) can be obtained using

[dummy, u] =min (max (G (x , : , :)+V{k+1}(F (x , : , :)),[], 3),[],
2);

[dummy, d] =max (min (G (x , : , :)+V{k+1}(F (x , : , :)),[],2),[],
3);

Solving finite zero-sum games with
MATLAB

31

1n

 , x ,k {1,2,...,K}.kV x

For reference, on a laptop with a Intel Pentium Mobile running
at 1.6GHz with 1GB of RAM, the computation of the cost-to-
go using backward iteration for a game with one 100,000
states, 10 actions for each player, and 10 stages takes about
40seconds.

When this procedure fails because Vminmax and Vmaxmin
differ, one may want to use a mixed policy using a linear
program. The indices of the states for which this is needed can
be found using k=find(Vminmax-=Vmaxmin)

Solving finite zero-sum games with
MATLAB

32

