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Consider now a one-player continuous-time differential game 
with the usual dynamics                                                                                                      

and initialized at a given x(0) = x0, but with an integral cost with 
variable horizon:

where        is the first time at which the state x(t) enters a closed 
set                  or                in case x(t) never enters         .
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 For this game, the cost-to-go from state x at time      is defined by

where the state x(t),          satisfies the dynamics

and        denotes the first time at which x(t) enters the closed set 

When we compute               for some                 , we have           
and therefore
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instead of the boundary condition in  Continuous-time dynamic 
programming with fixed termination time. However, it turns out 
that the Hamilton-Jacobi-Bellman equation  is still the same and 
we have the following result:

Theorem : Any continuously differentiable function             that 
satisfies the Hamilton-Jacobi-Bellman equation  with

is equal to the cost-to-go             . In addition, if the infimum in 
the Hamilton-Jacobi-Bellman equation is always achieved at some 
point in U, we have that:
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1.For any given x0, an optimal open-loop policy       is given by 

with           obtained from solving

2.An optimal (time consistent) state-feedback policy      is given 
by

Either of the above optimal policies leads to an optimal cost equal 
to V(0, x0).
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The Hamilton-Jacobi-Bellman equation is a partial differential
equation (PDE) and (4) can be viewed as a boundary condition
for this PDE

When we can find a continuously differentiable solution to this
PDE that satisfies the appropriate boundary condition, we
automatically obtain the cost-to-go. Unfortunately, solving a PDE
is often difficult to solve and many times the HJB equation does
not have continuously differentiable solutions

Open-loop and state-feedback information structures are
"optimal," in the sense that it is not possible to achieve a cost
lower thanV(0, x0), regardless of the information structure.
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Proof of Theorem: Let                                             be a trajectory 
arising from either the open-loop or the state-feedback policies and 
let                                          be another arbitrary trajectory. To 
prove optimality, we need to show that the latter trajectory cannot 
lead to a cost lower than the former.

Since                satisfies the Hamilton-Jacobi-Bellman equation and 
u*(t) achieves the infimum in the Hamilton-Jacobi-Bellman 
equation, for every ,we have that
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However, since         does not necessarily achieve the infimum, we 
have that

Let                     and denote the times at which          
and         respectively, enter the set       . Integrating both side of (5) 
and (6) over the intervals           and              , respectively.

Differential games with variable 
termination time

10

( , ( )) ( , ( ))
0 inf ( ( , ( ), ) ( , ( ), ))

( , ( )) ( , ( ))
( , ( ), ( )) ( , ( ), ( )) (6)

u U

V t x t V t x t
g t x t u f t x t u

t x

V t x t V t x t
g t x t u t f t x t u t

t x



 
  

 

 
  

 

( )u t

* [0, ]endT   [0, ]endT   *( )x t

( )x t end

[0, ]endT*[0, ]endT



we conclude that
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from which we obtain

Using boundary condition , two conclusions can be drawn from here: 
First, the signal does not lead to a cost smaller than that of u*(t), 
because
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Second, V(0,x0) is equal to the optimal cost obtained with u*(t), 
because

If we had carry out the above proof on an interval          with initial 
state               , we would have concluded that is the 
(optimal) value of the cost-to-go from state x at time   .

In a open-loop setting both                                                 are pre-
computed before the game starts.

Both the open-loop and the state-feedback policies lead precisely 
to the same trajectory.
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Zero-sum dynamic games in discrete time:

We now discuss solution methods for two-player zero-sum 
dynamic games in discrete time, which corresponds to dynamics 
of the form

starting at some initial state x1 in the state space    . At each time k, 
P1's action uk is required to belong to an action space       and P2's 
action dk is required to belong to an action space      .We assume a 
finite horizon (           ) stage additive costs of the form

Dynamic games in discrete time 
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that P1 wants to minimize and P2 wants to maximize. In this part 
we consider a state-feedback information structure, which 
correspond to policies of the form

Suppose that for a given state-feedback policy     for P1 and a given 
state-feedback policy     for P2, we denote by ,the 
corresponding value of the cost (7). Our goal is to find a saddle-
point pair of equilibrium policies               for which
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where     and       denote the sets of all state-feedback policies for 
P1 and P2, respectively.Re-writing previous equation as

we conclude that if was known we could obtain     from the 
following single-player optimization 
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In view of what we saw in Lecture 14, an optimal state-feedback 
policy     could be constructed first using a backward iteration to 
compute the cost-to-go            for P1 using

and then

Moreover, the minimum                is given by                                                                             
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Similarly, if     was known we could obtain an optimal state-
feedback policy       from the following single-player optimization

Note: We only derived the dynamic programming equations for 
single-player minimizations, but for single-player maximizations 
analogous formulas are still valid, provided that we replace all 
infima by suprema
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In view of what we saw in Lecture 14, an optimal state-feedback 
policy     could be constructed first using a backward iteration to 
compute the cost-to-go            for P2 using

and then

Moreover, the minimum                is given by                                                                             
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The key to finding the saddle-point pair of equilibrium policies      
is to realize that it is possible to construct a pair of state-feedback 
policies for which the four equations (8), (9), (10), (11) all hold.

To see how this can be clone, consider the costs-to-go       ,    
and state-feedback policies            at the last stage. For (8), (9), 
(10), and (11) to hold we need that

Discrete-time dynamic programming
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which can be re-written equivalently 

Since the right-hand side of the top and bottom equalities are the 
same, we conclude that                       . Moreover, this shows that 
the pair                                            must be a saddle-point 
equilibrium for the zero-sum game with outcome

Discrete-time dynamic programming
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and actions              and for the minimizer and maximizer, 
respectively. Moreover,                        must be precisely equal to 
the value of this game. In view of the results that we saw for zero-
sum games, this will only be possible if security policies exist and 
the security levels for both players are equal to the value of the 
game, i.e.,

Consider now the costs-to-go                 and state-feedback 
policies                  at stage K - 1. For (8), (9), (10), and (11) to 
hold we need that

Discrete-time dynamic programming
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and so we now conclude that the pair                                       
must be a saddle-point equilibrium for the zero-sum game with 
outcome
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and actions                   and       for the minimizer and 
maximizer, respectively. Moreover,                             must be 
precisely equal to the value of this game. Continuing this 
reasoning backwards in time all the way to the first stage, we 
obtain the following result:

Theorem: Assume that we can recursively compute functions         
,                                  , such that                                       we have 
that
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where

Then the pair of policies              defined as follows is a saddle-
point equilibrium in state-feedback policies:

.Moreover, the value of the game is equal 
to V1(x1).
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we actually conclude that

1) P2 cannot get a reward larger than V1 (x1) against          , 
regardless of the information structure available to P2, and

2) P1 cannot get a cost smaller than V1 (x1) against            , 
regardless of the information structure available to P1.

In practice, this means that          and are "extremely 
safe" policies for P1 and P2, respectively, since they guarantee a 
level of reward regardless of the information structure for the 
other player. 
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For games with finite state spaces and finite actions spaces, the 
backwards iteration in (12) can be implemented very efficiently in 
MATLAB. To this effect, suppose that we enumerate all states so 
that the state-space can be viewed as

and that we enumerate all actions so that the action spaces can be 
viewed as

For simplicity, we shall assume that all states can occur at every 
stage and that all actions are also available at every stage.

Solving finite zero-sum games with 
MATLAB
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In this case, each function fk(x, u, d) and gk(x, u, d) that define the 
game dynamics and the stage-cost, respectively, can be 
represented by a three-dimensional                      tensor. On the 
other hand, each Vk(x) can be represented by a          columns 
vector with one row per state. Suppose then that the following 
variables are available within MATLAB.

F is a cell-array with K elements, each equal to an              
three-dimensional matrix so that F{k} represents the game 
dynamics function

G is a cell-array with K elements, each equal to an 
three-dimensional matrix so that G{k} represents the stage-
cost function

Solving finite zero-sum games with 
MATLAB
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With these definitions, we can construct Vk(x) in (12) very 
efficiently using the following MATLAB code

V{K+1}=zeros(size(G{K},1),1);

for k=K:-1:1

Vminmax=min (max (G{k}+V{k+1} (F{k}) , [] , 3) , [] , 2) ; 
Vmaxmin=max (min (G{k }+V{k+1} (F{k}), [] , 2) , [] , 3) ;

if any(Vminmax-=Vmaxmin)

error('Saddle-point cannot be found')

end

V{k}=Vminmax;

end
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After running this code, the following variable as been created:

V is a cell-array with K + 1 elements, each equal to an    
columns vector so that V{k}represents

For a given state x at stage k, the optimal actions u and d given by 
(13)-(14) can be obtained using

[dummy, u] =min (max (G (x , : , : )+V{k+1}(F (x , : , : )),[], 3),[], 
2);

[dummy, d] =max (min (G (x , : , : )+V{k+1}(F (x , : , : ) ),[],2),[], 
3);
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 , x ,k {1,2,...,K}.kV x   



For reference, on a laptop with a Intel Pentium Mobile running 
at 1.6GHz with 1GB of RAM, the computation of the cost-to-
go using backward iteration for a game with one 100,000 
states, 10 actions for each player, and 10 stages takes about 
40seconds.

When this procedure fails because Vminmax and Vmaxmin
differ, one may want to use a mixed policy using a linear 
program. The indices of the states for which this is needed can 
be found using k=find(Vminmax-=Vmaxmin)
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