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® Dynamic Non-cooperative Game Theory: Second Edition
° ChapterS: Sections 5:5 and Chapter6: Sections 6:2

® An Introductory Course in Non-cooperative Game Theory
® Chapter 18
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We now discuss the solution for two—player Zero-sum dynamic games in

continuous time, which corresponds to dynamics of the form

o) = f (£.x@), ut) , dt)),  Vte[0T] 1)
—— — — ——

state game tzme current B's action P,'s action

derivative  dynamics state at time t at time t

with state ,. (t)eR" initialized at a given x 0)=x, For every time
t €[0,T] , the action u(t) is required to belong to a given action space
Uand P,'s action d(t) is required to belong to an action space D. We

assume a finite horizon (7" < 00) integral cost of the form

J = jg(f x(2),u(?),d(t))dt  +q(x(T)) (2)
cost along trajctory final cost
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that P, wants to minimize and P, wants to maximize. In this part
we consider a state-feedback information structure, which

correspond to policies of the form

u(t)=y(t,x@)), ,d(t)=o(t,x(?)), Vte[0,T],

For continuous-time we can also use dynamic programming to
construct saddle—point equilibria in state-feedback policies. The
following result is the equivalent of Theorem about zero-sum

dynarnic games in discrete time for continuous time.
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Theorem 17.1. Assume that there exists a continuously
differentiable function V (z, x) that satisfies the following

Hamilton-Jacobi-Bellman-Isaac equation

_oV(5,x) =minsup(g(¢,x,u,d) + oV,x) S, x,u,d))
az’- uelU deD a.x
. oV (t.x)
B A
with

V(T,x)=q(x), vVxeR” (4)

3)

f(t,x,u,d)),vtel[0,T],xeR”
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Then the pair of policies (7/*,0 *)defined as follows is a saddle-

point equilibrium in state-feedback policies:

7 (1) =argminsup(g(e. 5. d) + 2

uel deD

J(t,x,u,d))

GV(t X)

o (t,x)= argt}}%xmg(g(t x,u,d)+ f(t,x,u,d))

Vt [0, T],x € R" Moreover, the value of the garne is equal to (0,
Xp).
NOTE: Theorem 17.1 provides a sufficient condition for the

existence of Nash equilibria, but this condition is not necessary. In

particular, two security levels may not commute for some state x

at some stage t, but there may still be a saddle-point for the game.
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Proof of Theorem 17.1. From the fact that the inf and sup
commute in (3) and the definitions of v (t,x) and o (t,x), we
conclude that the pair (y(¢,x), o (¢,x))is a saddle-point

equﬂlbrlum for a zero-sum game with criterion

o(t.xu,d) + aV(t ) r(txn.d)

which means that

W(t L T R

5V(t X)

g(t,x,j/*(t,x),d) +

f(t,x,y (t X),o (t x)) <

a(t,x, 7/*(1‘, X), o (t,x))+

o(t.xu, 0 (£,X)) + ‘W(t’x) f(t,x,u,a*(t,x))

@ )
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Moreover, since the middle term in these inequalities is also equal
to the right-hand-side of (3), we have that
_oV(t,x) ot o)+ oV (t,x)

t,x,v ,0 ),xeR”
Py A ft.x,y ,0)

—sup(g(t,x, " (1,x),d) + L)

deD 8)6

which, because of Theorem Continuous-time dynamic
programming in lecture 15, shows that o (t,x) isan optimal
(maximizing) state-feedback policy against 7/* (¢,x) and the

maximum is equal to V(0, x,).
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f(t,x, 7/* (t,x),d)),Vte[0,T]
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Moreover, since we also have that

oV (t,x) .« OV(t,x)
— =g, x,y ,0 )+
Y g(t,x,y ,0) o

f(t,x,y .0 ),xeR"

= inf(g(t,x,0° (1,0 + 2
uelU ax
we can also conclude that 7 (£,X) is an optimal (minimizing) state-
feedback policy against o (¢,x)and the minimum is also equal to
V(0,x,). This proves that (5° 5") is indeed a saddle-point

equilibrium in state-feedback policies with value V(0, x,).
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f(t,x,u,a* (t,x))),Vt €[0,T]
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Note: we actually conclude that

1.P, cannot get a reward larger than V (0, x) againstj/* (t,x),

regardless of the information structure available to P,, and

2.P, cannot get a cost smaller than V(0, x,,) against o (t,x),

regardless of the information structure available to P,.

In practice, this means that 7 (£,X)and 0 (¢,X) are "extremely
safe" policies for P, and P,, respectively, since they guarantee a
level of reward regardless of the information structure for the

other player.
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Continuous-time linear quadratic games are characterized by linear

dynamics of the form
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x(t) = Ax(t)+ Bu(t)+ Ed (1), xeR'.ueR",deR",te[0,T]

£ (tx(0).u(t).d()
and an integral quadratic cost of the form

J = j Iyl +Hu(t)\ — 2| ydt +x'(T)P, x(T)
g(t,x(2), u(t) d(1)) q(X(T))

where

y(t) = Cx(2), Vtel0,T]

o
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This cost function captures scenarios in which

1) player P, wants to make y(t) small over the interval [0, T]

without "spending" much effort in its action u(z),

2) whereas player P, wants to make y(t) large without "spending”

much effort in its action d(z).

The constant # can be seen as a conversion factor that maps units

of d(t) into units of u(t) and y(z)

NOTE: If needed, a "conversion factor" between units of u and y

could be incorporated into the matrix C that defines y.

o




- I
{Linear quadratic dynamic games } @

¢ g vee, b
O ~a17, o=
Or/r Ll 4l

The Hamilton-Jacobi-Bellman-Isaac equation for this game is

OV (t,x) oV (t,x)

=minsup(x'C'Cx+u'u — y°d'd + (Ax + Bu + Ed))
5t uel' gep 5)6
=maxinf(xX'C'Cx+u'u— p’d'd + oV, %) (Ax+ Bu + Ed))
deD ueU 6x
Vte[0,T],x e R" ,with
V(T,x)=x"(T)P, x(T), VxeR"

Inspired by the boundary condition , we will try to find a solution

to the Hamilton-Jacobi-Bellman-Isaac equation of the form

Vt,x)=x"P(t)x, VxeR",Vte[0,T]

© y
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for some appropriately selected symmetric n x n matrix P(z). For
boundary condition to hold, we need to have P(T) = P,.. For the
Hamilton-Jacobi-Bellman-Isaac equation to hold, we need

—x'P(t)x = minsup(x'C'Cx+u'u — p°d'd + 2x' P(t)(Ax + Bu + Ed))

uelU deD

= maxinf (x'C'Cx+u'u — y°d'd + 2x' P(t)(Ax + Bu+ Ed)) (5)

deD ueU

Vte[0,T],x € R” Since the functions to optimize are quadratic,
to compute the inner supremum and infimum in (5), we simply

need to make the appropriate gradients equal to zero:

%(X'C'C)H u'u—1°d'd +2x' P(t)(Ax+ Bu+ Ed)) =0

@ & 242d" +2X'PE=0<d = 4> EPx
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;(X'C'CX-I- u'u—1°d'd +2x' P(t)(Ax+ Bu+ Ed)) =0
U

<S2u'+2xX’PB=0<u=-B"Px
Therefore

sup(x'C'Cx+u'u — 1°d'd + 2x' P(t)(Ax + Bu + Ed))

deD -

—
d=x"% E'Px

=xX'(PA+ AP+C'C+u”PEEP)x+u'u+2x'PBu

inf(x'C'Cx+u'u — p’d'd + 2x' P(t)(Ax + Bu + Ed))

uelU

-~
u=—B'Px

=x'(PA+ A'P+C'C-PBB'P)x— u°d'd + 2x'P Ed.

L
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This means that (5) is of the form

—x'P(t)x = min(x'(PA+ A'P+C'C+ 1 > PEE'P)x+u'u+2x'P Bu)

uel

=max(x'(PA+ AP+ C'C-PBB'P)x— u’d'd + 2x'P Ed)

deD

Once again we have quadratic functions to optimize so all we need

to do is to make their gradients equal to zero:

ai(x’(PA+ AP+C'C+u”PEEP)x+u'u+2x'PBu)=0< u=-B'Px
u

8%(X'(PA+ AP+C'C-PBB'P)x—p’d'd +2x'PEd)=0<d=pu " EPx

© y
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Therefore
min(x'(PA+ AP+ C'C+ u°PEEP)x+u'u+2x' PBu) 0

uelU «

u= B Px
=x'(PA+ A'P+C'C+u”PEEP-PBB'P)x
max(x'(PA+ AP+ C'C-PBB'P)x— y°d'd +2x' PEd)=0

deD -

d= ,u_zEPx

=x'(PA+ AP+C'C+uPEEP-PBB'P)x
Therefore the inf and sup commute and (5) simply becomes

—X'P(t)x =x'(PA+ A'P+C'C+ 4 *PEEP-PBB'P)x

L y
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which holds provided that
—P(t)=PA+ AP+C'C+u*PEEP-PBB'P, Vte[0,T]
The following then follows from Theorem 17.1:

Corollary 17.1. Suppose that there is a symmetric solution to

the following matrix-valued ordinary difterential equation
—P(t)=PA+ AP+CC+u*PEEP-PBB'P, Vte[0,T]

with final condition P(T) = P.. Then the state-feedback policies
v (t,x)=—B'Px, o (t,x)=u EPx, xeR",Vte[0,T]

is a saddle-point equilibrium in state-feedback policies with value

x'(0)P(0)x(0)

o
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Note (Induced norm). Since(y", ") is a saddle-point
equilibrium with value x'(0)P(0)x(0), when P, uses
u(t)=y (t,x)=—B'Px

for every policy

d(t) = o (t,x(1))

for P,, we have that

J(y',0)=x,PO0)x, 2 J(y,0) = I(Hy(t)H | -1 |d@)|Hat

+x'(T)P,. x(T)

and therefore

[y at < x, PO)x, + [ 47| @ dt ~[|uo)|] de —x'(T)P, x(T)

@ 0 0 0 /
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When P is positive semi-definite and x, = 0, this implies that

Jly@l de < [ la o) d

Moreover, this holds for every possible d(t), regardless of the

information structure available to P,, and therefore we conclude

that -
Jjuymuz p
sup =

< \/ [la] d

<u (6
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In view of (6), the control law is said to achieve an L2-induced
norm in the interval [0, T] from the disturbance d to the output y

lower than /.

NOTE: When T =00, the left-hand side of (6) is called the H-
infinity norm of the closed-loop and control low guarantees a H-

infinity norm smaller than £z

© y
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Consider now a two—player zero-sum differential game with the

usual dynamics

x(t) = f (t,x(0),u(?),d(t)), x(1)eR",u(t)eU,d(t)e D,t>0
—— -

state game
derivative  dynamics

and initialized at a given x(0) = x,, but with an integral cost with

variable horizon:
T

end

J = | gt.x(®).u@).d)dt +4(T,;. x(T,,,))

0

cost along trajctory final cost

QO where 7', is the first time at which the state x(¢) enters a closed

o

n
set Xord SR or T, , =0 in case x(t) never enters Xend
end
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Also for this game we can use dynamic programming to construct
saddle-point equilibria in state-feedback policies. The following
result is the equivalent of Theorem 17.1 for this game with

variable termination time.

Theorem 17.2. Assume that there exists a continuously
differentiable function V (z, x) that satisfies the following

Hamilton-Jacobi-Bellman-Isaac equation (3) with

Vt,x)=q(t, x), Vi>0,xey,, (7)

© y
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Then the pair of policies (7/*,0 *)defined as follows is a saddle-

point equilibrium in state-feedback policies:

8V(t X)

¥ (t,x) = argminsup(g(t,x,u,d) +

uel deD

J(t,x,u,d))

GV(t,x)

o (t,x)= argt}}%xmg(g(t x,u,d)+ f(t,x,u,d))

Vt [0, T],x € R" Moreover, the value of the garne is equal to (0,
Xp).

NOTE: We can view (7) as a boundary condition for the

Hamilton -Jacobi-Beilman-Isaac equation (3). From that perspective,
Theorems 17.1 and 17.2 share the same Hamilton - Jacobi - Bellman-
Isaac PDE and only ditfer by the boundary conditions.
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variable termination time

Proof of Theorem 17.2. From the fact that the inf and sup
commute in (3) and the definitions of v (t,x) and o (t,x), we

have that
8V(t X)

f(t,x,7 (t,x),d) <
aV(t X)

a(t,x, 7/* (t,x),d)+

g(t,x,V*(t,X),G*(t,X)H f@x,y (t,x),0°(t,x) <

8V(t x)

f(t,x,u,o (t,x))

g(t,x,u,O'* (t,x))+
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Moreover, since the middle term in these inequalities is also equal

to the right-hand-side of (3), we have that

B oV (t,x) —— 7*90_*) N oV (t,x) fltx, 7/*,0*),X CR”
ot Ox

—sup(g(t,x, " (1,x),d) + L)

deD 8)6

which, because of Theorem Continuous-time dynamic
programming in lecture 15, shows that o (t,x) isan optimal
(maximizing) state-feedback policy against 7/* (¢,x) and the

maximum is equal to V(0, x,).
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f(t,x, 7/* (t,x),d)),Vte[0,T]
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Moreover, since we also have that

oV (t,x) . . OV(t,x)
- =g, x,y ,0 )+
Ot gty ,0) Ox

f(t,x,y .0 ),xeR"

=1inf(g(¢,x,u, o (t,x)) + oVit,x)

uelU ax

f(t,x,u,a* (t,x))),Vt €[0,T]

we can also conclude that 7 (£,X) is an optimal (minimizing) state-
feedback policy against o (¢,x)and the minimum is also equal to
V(0,x,). This proves that (5° 5") is indeed a saddle-point

equilibrium in state-feedback policies with value V(0, x,).

o
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Note: we actually conclude that

1.P, cannot get a reward larger than V (0, x) againstj/* (t,x),

regardless of the information structure available to P,, and

2.P, cannot get a cost smaller than V(0, x,,) against o (t,x),

regardless of the information structure available to P,.

In practice, this means that 7 (£,X)and 0 (¢,X) are "extremely
safe" policies for P, and P,, respectively, since they guarantee a
level of reward regardless of the information structure for the

other player.
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