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A stochastic game is a collection of normal-form games that the
agents play repeatedly

 The particular game played at any time depends
probabilistically on

the previous game played

the actions of the agents in that game

Stochastic Games 
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A stochastic (or  Markov) game includes the following: 
a finite set Q of states (games), 
a set  of agents, 
For each agent i, a finite set  Ai of possible actions 
A transition probability function

P                                probability of transitioning to state  if the 
action profile  is used in state  q

For each agent i , a real-valued  payoff function

This definition makes the inessential but simplifying assumption 
that each agent’s strategy space is the same in all games 
  So the games differ only in their payoff functions

Markov Games 
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 Before, a history was just a sequence of actions

 But now we have action profiles rather than individual actions,
and each profile has several possible outcomes

 Thus a history is a sequence ,
where t is the number of stages

The two most common methods to aggregate payoffs into an
overall payoff are average reward and future discounted
reward

Agent i’s average reward is 

Histories and Rewards 
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 Agent i’s future discounted reward is the discounted sum of 
the payoffs, i.e.,

 Where                                  is a constant called the discount 
factor

 Two ways to interpret the discount factor: 

1. The agent cares more about the preset than the future 

2. The agent cares about the future, but the game ends at any 
round with probability 1 −β

Histories and Rewards 
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 Stochastic games generalize both Markov decision processes ( 
MDPs) and repeated games

 An MDP is a stochastic game with only 1 player  

 A repeated game is a stochastic game with only 1 state 

 Iterated Prisoner’s Dilemma, Roshambo (Rock, Paper, Scissors) , 

 Iterated Battle of the Sexes,

Histories and Rewards 
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 For agent i, a deterministic strategy specifies a choice of action
for i at every stage of every possible history

 A mixed strategy is a probability distribution over deterministic
strategies

   Several restricted classes of strategies:

As in extensive-form games, a behavioral strategy is a mixed strategy
in which the mixing take place at each history independently

 A Markov strategy is a behavioral strategy such that for each time t,
the distribution over actions depends only on the current state

 But the distribution may be different at time t than at time t' ≠ t

 A stationary strategy is a Markov strategy in which the distribution
over actions depends only on the current state (not on the time t)

Strategies 
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First consider the (easier) discounted-reward case

  A strategy profile is a Markov-perfect equilibrium (MPE) if

 it consists of only Markov strategies

 it is a Nash equilibrium regardless of the starting state

Theorem: Every n-player, discounted-reward stochastic game
has a MPE

The role of Markov-perfect equilibria is similar to role of
subgame -perfect equilibria in perfect-information games

Equilibria
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Now consider the average-reward case

 A stochastic game is irreducible if every game can be reached
with positive probability regardless of the strategy adopted

Theorem: Every 2-player, average reward, irreducible stochastic
game has a Nash equilibrium

A payoff profile is feasible if it is a convex combination of the
outcomes in a game, where the coefficients are rational numbers

There’s a folk theorem similar to the one for repeated games:

 If (p1,p2) is a feasible pair of payoffs such that each pi is at least as big
as agent i’s minimax value, then (p1,p2) can be achieved in
equilibrium through the use of enforcement

Equilibria
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For two-player zero-sum stochastic games

  The situation is similar to what happened in repeated games

  The only feasible pair of payoffs is the minimax payoffs

One example of a two-player zero-sum

stochastic game is Backgammon

Two agents who take turns

   Before his/her move,

an agent must roll the dice

  The set of available moves depends

on the results of the dice roll

Two-Player Zero-Sum Stochastic Games 
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Mapping Backgammon into a Markov game is straightforward, but
slightly awkward

Basic idea is to give each move a stochastic outcome, by combining it
with the dice roll that comes after it

 Every state is a pair:

 (current board, current dice configuration)

 Initial set of states ={initial board} ×

{all possible results of agent 1’s first dice roll}

 Set of possible states after agent 1’s move =

{the board produced by agent 1’s move}

× {all possible results of agent 2’s dice roll}

  Vice versa for agent 2’s move

Two-Player Zero-Sum Stochastic Games 
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We can extend the minimax algorithm to deal with this

But it’s easier if we don’t try to combine the moves and the dice
rolls

 Just keep them separate

Dice rolls increase branching factor

 21 possible rolls with 2 dice

 Given the dice roll, ≈20 legal moves

on average

For some dice roles, can be much higher

•  depth 4 = 20×(21×20)3≈1.2×109

Two-Player Zero-Sum Stochastic Games 

14



As depth increases, probability of reaching a given node shrinks

TDGammon uses depth-2 search+very good evaluation
function

   ≈world-champion level

The evaluation function was

created automatically using

a machine learning technique

calledTemporal Difference learning

Two-Player Zero-Sum Stochastic Games 
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An evolutionary simulation is a stochastic game whose structure is
intended to model certain aspects of evolutionary environments

At each stage(or generation) there is a large set (e.g., hundreds) of agents

 Different agents may use different strategies

A strategy s is represented by the set of all agents that use strategy s

Over time, the number of agents using s may grow or shrink depending
on how well s performs

 s’s reproductive success is the fraction of agents using sat the end of
the simulation,

 i.e., (number of agents using s)/(total number of agents)

Evolutionary Simulations
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At each stage, some set of agents (maybe all of them, maybe just
a few) is selected to perform actions at that stage

Each agent receives a fitness value: a stochastic function of the
action profile

Depending on the agents’ fitness values, some of them may be
removed and replaced with agents that use other strategies

Typically an agent with higher fitness is likely to see its numbers
grow

The details depend on the reproduction dynamics
The mechanism for selecting which agents will be removed, which agents

will reproduce, and how many progeny they’ll have

Replicator Dynamics
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Replicator dynamics works as follows:

   pi
new= pi

curr ri / R,

where

 pi
new is the proportion of agents of type i in the next stage

 pi
cur is the proportion of agents of type i in the current stage

 ri= average payoff received by agents of type i in the current stage

   Ri= average payoff received by all agents in the current stage

Under the replicator dynamics, an agent’s numbers grow (or shrink)
proportionately to how much better it does than the average

   Probably the most popular reproduction dynamics
   e.g., does well at reflecting growth of animal populations

Replicator Dynamics
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Imitation dynamics (or tournament selection) works as
follows:
Randomly choose 2 agents from the population, and compare their

payoffs
The one with the higher payoff reproduces into the next generation

Do this n times, where n is the total population size

Under the imitation dynamics, an agent’s numbers grow if it
does better than the average
But unlike replicator dynamics, the amount of growth doesn’t

depend on how much better than the average

Thought to be a good model of the spread of behaviors in a
culture

Replicator Dynamics
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A repeated lottery game
 At each stage, agents make choices between two lotteries
 “Safe” lottery: guaranteed reward of 4
   “Risky” lottery: [0, 0.5; 8, 0.5],

 i.e., probability ½of 0, and probability ½of 8

Let’s just look at stationary strategies
 Two pure strategies:

 S: always choose the “safe” lottery
 R: always choose “risky” lottery

 Many mixed strategies, one for every p in [0,1]
 Rp: probability p of choosing the “risky” lottery, and

probability 1–p of choosing the “safe” lottery

Example: A Simple Lottery Game
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At each stage, each strategy’s average payoff is 4

Thus on average, each strategy’s population size should stay
roughly constant

 Verified by simulation

for S and R

Would get similar behavior

with any of the Rp strategies

Lottery Game with Replicator 
Dynamics
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Pick any two agents, and let sand tbe their strategies

Regardless of what s and t are, each agent has equal probability
of getting a higher payoff than the other

Again, each strategy’s

population size should

stay roughly constant

 Verified by simulation

for S and R

Would get similar behavior

with any of the Rp strategies

Lottery Game with Imitation Dynamics
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 Now, suppose that at each stage, agents make two rounds of lottery choices

1. Choose between the safe or risky lottery, get a reward

2. Choose between the safe or risky lottery again, get another payoff

 This time, there are 6 stationary pure strategies
 SS: choose “safe” both times

 RR: choose “risky” both times

 SR: choose “safe” in first round, “risky” in second round

 RS: choose “risky” in first round, “safe” in second round

 R-WR: choose “risky” in first round
 If it wins (i.e., reward is 8), then choose “risky” again in second round

 Otherwise choose “safe” in second round

 R-WS: choose “risky” in first round
 If it wins (i.e., reward is 8), then choose “safe” in second round

 Otherwise choose “risky” in second round

Double Lottery Game
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At each stage, each strategy’s average payoff is 8

Thus on average, each strategy’s population size should stay
roughly constant

Verified by simulation

for all 6 strategies

Double Lottery Game, Replicator 
Dynamics 
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Pick any two agents a and b, and let choose actions
Reproduce the agent (hence its strategy) that wins (i.e., higher reward)

 If they get the same reward, choose one of them at random Verified by
simulation

We need to look at each strategy’s distribution of payoffs:

 Suppose a uses SS and b uses SR
 P(SR gets 12 and SS gets 8) = (0.5)(1.0) = 0.5 => SRwins

 P(SRgets 4 and SSgets 8) = (0.5)(1.0) = 0.5 => SSwins

 Thus a and b are equally likely to reproduce

 Same is true for any two of {SS, SR, RS, RR}

Double Lottery Game, Imitation 
Dynamics 
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Suppose a uses R-WS and b uses SS
Even though they have the same expected reward, R-WS is likely

to get a slightly higher reward than SS:
P(R-WS gets 12 and SS gets 8) = (0.5)(1.0) = 0.5 => R-WS wins

P(R-WS gets 8 and SS gets 8) = (0.25)(1.0) = 0.25 => tie

P(R-WS gets 0 and SS gets 8) = (0.25)(1.0) = 0.25 => SS wins

  Thus a reproduces with probability 0.625,
and b reproduces with probability 0.375

Similarly, a is more likely to reproduce than b

if a uses R-WS and b uses any of {SS, RR, R-WR}

Double Lottery Game, Imitation 
Dynamics 
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If we start with equal numbers of all 6 strategies, S-WRwill
increase until SS, RR, and R-WR become extinct

The population should stabilize with a high proportion of S-WR,
and low proportions of

SR and RS

Verified by simulation

Double Lottery Game, Imitation 
Dynamics 
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