نظريه بازيها **Game Theory**

ارائه كننده: اميرحسين نيكوفرد مهندسي برق ^و كامپيوتر دانشگاه خواجه نصير

Saddle-point

Definition: (Pure saddle-point equilibrium):

Let A define the matrix game. A pair of policies (i^*, j^*) is called a pure saddle-point equilibrium if

 $a_{i^*, j^*} \ge a_{i, j^*}$ $\forall i \in \{1, ..., m\}$ (rows - the maximizer) $a_{i^*, j^*} \le a_{i^*, j}$ $\forall j \in \{1, ..., n\}$ (columns - the minimizer)

$$
\Rightarrow a_{i,j^*} \le a_{i^*,j^*} \le a_{i^*,j} \qquad \forall i \in \{1,...,m\}, \forall j \in \{1,...,n\}
$$

value a_{i^*, j^*} *is the saddle-point value;*

Saddle-point

Row player has no incentive to deviate from his/her strategy

- Column player has no incentive to deviate from his/her strategy
- \Box No player will regret his choice, if they both use these strategies (i^*,j^*)
- No player will benefit from an unilateral deviation from the equilibrium (Pure Nash equilibrium)

Remember :A matrix game defined by A has a saddle-point equilibrium if and only if

$$
V(A) := \max_{i \in \{1, \dots, m\}} \min_{j \in \{1, \dots, n\}} a_{i,j} = \overline{V}(A) := \min_{j \in \{1, \dots, n\}} \max_{i \in \{1, \dots, m\}} a_{i,j}
$$

 (i^*, j^*) is a saddle-point equilibrium

Security levels and policies

Proposition (Min-Max Property)

For every finite matrix A, the following properties hold:

(i) Security levels are well defined and unique

(ii) Both players have security policies (not necessarily unique) (iii) The security levels always satisfy

 $V(A) := \max_{i \in \{1, \dots, m\}} \min_{j \in \{1, \dots, n\}} a_{i,j} \leq V(A) := \min_{j \in \{1, \dots, n\}} \max_{i \in \{1, \dots, m\}} a_{i,j}$

Saddle-point and security levels

Assume that $a_{i,j^*} \le a_{i^*,j^*} \le a_{i^*,j} \quad \forall i, j \text{ holds}$

$$
a_{i^*,j^*} = \min_j a_{i^*,j} \le \max_i \min_j a_{i,j} = V(A)
$$

$$
a_{i^*,j^*} = \max_i a_{i,j^*} \ge \min_j \max_i a_{i,j} = V(A)
$$

 \Box Implies that $V(A) \leq V(A)$ But from previous proposition we have $V(A) \leq V(A)$ The case if $V(A) = V(A)$

Saddle-point and security levels

Proof: Assume that $V(A) = a_{i^*, j^*} = V(A)$ holds $_{i,j}$ = max min $a_{i,j} = V(A)$ * , $\leq a_{i^*,j}$ $\forall j$ $\min_{j} a_{i^*,j}$ \mathbf{u}^* , \mathbf{j}^* **d i i i j i i j** a_{**} = max min a_{**} = $V(A)$ $=$ min a $_{i,j}^* = \min_{i} \max_{i} a_{i,j} = V(A)$ \overline{j}^* i,j^* $\max_i a_{i,j}$ i^* , j^* **i i i i i** a_{**} = min max a_{**} = $V(A)$ *a* $\geq a$, $\forall i$

 \Box Implies that $a_{i,j^*} \leq a_{i^*,j^*} \leq a_{i^*,j} \quad \forall i, j$

Election games

Two players: Donald T. and Hillary C.

■ Both players have three strategies: **campaign the last day in Iowa (I) campaign the last day in New York (NY)**

campaign the last day in Texas (T)

Donald T.

NY -3 -2 6 NY 2 0 2

 $T \t 5 \t -2 \t -4$

Hilary C.

- **□ Hillary C. tries to maximize the voters that she wins from** Donald T.
- **Q** Donald T. tries to minimize the voters that he looses to Hillary C.

Donald T.

Hilary C.

Election games

Donald T. $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{1} & -3 & -2 & 6 & -3 \\
\hline\n\text{2} & \text{0} & 2 & 0\n\end{array}$ -4 NY T $1 \mid -3 \mid -2$ 6 NY 2 0 $\overline{2}$ T 5 -2 -4

- \Box Hillary C. tries to maximize the voters
- **□ Conservative policy for Hillary C. □ Choose NY (Worst case gain of 0)**

Saddle-point equilibrium

Donald T. Hilary C. NY T I -3 -2 6NY 202 $T \mid 5$ -2 -4

The cell (NY,NY) is a saddle point:

- \Box the cell has the smallest value in its row
- \Box column player has no incentive to deviate from his strategy
- \Box the cell has the larger value in its column
- \Box row player has no incentive to deviate from her strategy

Order interchangeability

Suppose that a game defined by a matrix A has two distinct saddle-point equilibria: (i_1^*, j_1^*) and (i_2^*, j_2^*)

From previous Theorem, both have exactly the same value $V(A)$ = $V(A)$ and

- \Box *i*^{*} and *i*^{*} are security policies for P1 \ddot{i}_2^*
- j_1 and j_2 are security policies for P2

What about points (i_1^*, j_2^*) and (i_2^*, j_1^*) ?

Order interchangeability

Proposition

(Order interchangeability). If (i_1^*, j_1^*) and (i_2^*, j_2^*) are saddlepoint equilibria for a matrix game defined by A , then (i_1^*,j_2^*) and (i_2^*, j_1^*) are also saddle-point equilibria for the same game and all equilibria have exactly the same value.

This property only holds for zero-sum games

16

□ Conservative strategy for Hillary C. □ Choose T (Worst case gain of 0)

Security v.s. Regret: Alternate play

Assume P2 plays first. Question: would P2 be happy with his choice if he solves $\{1,...,n\}$ $i \in \{1,...,m\}$ '' $(A) = \min_{i \in \{1, \ldots n\}} \max_{i \in \{1, \ldots n\}} a_{i,j}$ *j* ∈{1,...,n} *i* $V(A) = \min_{j \in \{1, ..., n\}} \max_{i \in \{1, ..., m\}} a_j$ \equiv

- \Box The interpretation of the min max is that P1(the maximizer) can see the action of P2(the minimizer)
- \Box The safe strategy for P2 is to be conservative
- \Box He will not regret his decision
- The same argument holds for P1

These conclusions generalize to any game with alternate play : in such games, there is no reason for rational players to ever regret their decision to play a security policy.

Security v.s. Regret: Simultaneous plays

Suppose players decide actions simultaneously, i.e., without knowing the others choice.

If both players use their respective security policies then

□ P1 selects row 3 (guarantees reward \geq 0)

 \Box P2 selects column 3 (guarantees cost \leq 2)

This leads to cost/reward

Security v.s. Regret: Simultaneous plays

NY T I 1 0 -2 $NY \mid 3 \mid -1 \mid 2$ T 3 2 0 Donald T. Hilary C. -2-1 Ω 32 2

After the game is over

 \Box P2 is happy with choice since column 3 was the best response to row 3

□ P1 regrets choice: "if I knew P2 was going to play column 3, I would have played row 2, leading to reward $2 \ge 0$ "

21

Security v.s. Regret: Simultaneous plays

Perhaps they should have played

□ P1 selects row 2

□ P2 selects column 3

leading to cost/reward $= 2$

□ Now the minimizer regrets his choice

■ No further "a-posteriori" revision of their decisions would lead to a no-regret outcome

 \bullet Unlike alternate play, security policies may lead to regret in matrix games with simultaneous play

27

Definition: Pareto Optimality

An outcome is Pareto optimal if there is no other outcome which would give both players a higher payoff or would give one player the same payoff and the other player a higher payoff

Pareto Optimality

Pareto Optimality

Pareto Optimality

