نظریه بازیها Game Theory

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Saddle-point

Definition: (Pure saddle-point equilibrium):

Let *A* define the matrix game. A pair of policies (i^*, j^*) is called a pure saddle-point equilibrium if

 $\begin{array}{ll} a_{i^*,j^*} \geq a_{i,j^*} & \forall i \in \{1,...,m\} & (\text{ rows - the maximizer }) \\ a_{i^*,j^*} \leq a_{i^*,j} & \forall j \in \{1,...,n\} & (\text{ columns - the minimizer }) \end{array}$

$$\Rightarrow a_{i,j^*} \leq a_{i^*,j^*} \leq a_{i^*,j} \qquad \forall i \in \{1,...,m\}, \forall j \in \{1,...,n\}$$

value a_{i^*,j^*} is the saddle-point value;

Saddle-point

Row player has no incentive to deviate from his/her strategy
 Column player has no incentive to deviate from his/her strategy
 No player will regret his choice, if they both use these strategies (i*, j*)
 No player will benefit from an unilateral deviation from the equilibrium (Pure Nash equilibrium)

Remember : A matrix game defined by A has a saddle-point equilibrium if and only if

$$V_{-}(A) := \max_{i \in \{1,...,m\}} \min_{j \in \{1,...,n\}} a_{i,j} = V_{-}(A) := \min_{j \in \{1,...,n\}} \max_{i \in \{1,...,m\}} a_{i,j}$$

 (i^*, j^*) is a saddle-point equilibrium

Security levels and policies

Proposition (Min-Max Property)

For every finite matrix A, the following properties hold:

(i) Security levels are well defined and unique

(ii) Both players have security policies (not necessarily unique)(iii) The security levels always satisfy

 $\underline{V}(A) := \max_{i \in \{1,...,m\}} \min_{j \in \{1,...,n\}} a_{i,j} \le \overline{V}(A) := \min_{j \in \{1,...,n\}} \max_{i \in \{1,...,m\}} a_{i,j}$

Saddle-point and security levels

Assume that $a_{i,j^*} \leq a_{i^*,j^*} \leq a_{i^*,j} \quad \forall i, j \text{ holds}$

$$a_{i^*,j^*} = \min_{j} a_{i^*,j} \le \max_{i} \min_{j} a_{i,j} = V(A)$$

$$a_{i^*,j^*} = \max_{i} a_{i,j^*} \ge \min_{j} \max_{i} a_{i,j} = V(A)$$

□ Implies that V(A) ≤ V(A)
□ But from previous proposition we have V(A) ≤ V(A)
□ It can only be the case if V(A) = V(A)

Saddle-point and security levels

Proof: Assume that $V(A) = a_{i^*,i^*} = V(A)$ holds $a_{i^*,j^*} = \min_{i} \max_{i} a_{i,j} = \overline{V}(A)$ $= \max_{i} a_{i,j^*}$ $\geq a_{i,i^*} \qquad \forall i$ $a_{i^*,j^*} = \max_i \min_i a_{i,j} = \underline{V}(A)$ $= \min_{i} a_{i^*, j}$ $\leq a_{i^*,i} \qquad \forall j$

 $\square \text{ Implies that } a_{i,j^*} \leq a_{i^*,j^*} \leq a_{i^*,j} \quad \forall i , j$

Election games

Two players: Donald T. and Hillary C.

Both players have three strategies:
 campaign the last day in Iowa (I)
 campaign the last day in New York (NY)
 campaign the last day in Texas (T)

Donald T.

Hilary (

- Hillary C. tries to maximize the voters that she wins from Donald T.
- Donald T. tries to minimize the voters that he looses to Hillary C.

Т

6

2

-4

Donald T.

-3

2

5

NY

-2

0

-2

Т

Election games Donald T. NY Т Hilary C. -3 -2 6 -3 NY 2 0 2 Т 5 -2 -4 -4

- □ Hillary C. tries to maximize the voters
- □ Conservative policy for Hillary C.
 - □ Choose NY (Worst case gain of 0)

Election games

Donald T. tries to minimize the voters

- Conservative policy for Donald T.
 - □ Choose NY (Worst case loss of 0)

Saddle-point equilibrium

Donald T. NY Т Hilary C. -3 -2 6 2 2 NY 0 5 -2 Т -4

The cell (NY,NY) is a saddle point:

- the cell has the smallest value in its row
- column player has no incentive to deviate from his strategy
- □ the cell has the larger value in its column
- □ row player has no incentive to deviate from her strategy

Order interchangeability

Suppose that a game defined by a matrix A has two distinct saddle-point equilibria: (i_1^*, j_1^*) and (i_2^*, j_2^*) From previous Theorem, both have exactly the same value V(A) = V(A) and

- \Box i_1^* and i_2^* are security policies for P1
- \Box j_1^* and j_2^* are security policies for P2

What about points (i_1^*, j_2^*) and (i_2^*, j_1^*) ?

Order interchangeability

Proposition

(Order interchangeability). If (i_1^*, j_1^*) and (i_2^*, j_2^*) are saddlepoint equilibria for a matrix game defined by A, then (i_1^*, j_2^*) and (i_2^*, j_1^*) are also saddle-point equilibria for the same game and all equilibria have exactly the same value.

This property only holds for zero-sum games

Consider the following setting of the Elections Game:

Т

-2

2

0

Donald T.

1

3

3

NY

Т

NY

0

-1

2

\bigcirc
Hilary

□Choose T (Worst case gain of 0)

Security v.s. Regret: Alternate play

Assume P2 plays first. Question: would P2 be happy with his choice if he solves $\overline{V}(A) = \min_{i \in \{1,...,n\}} \max_{i \in \{1,...,m\}} a_{i,j}$

- The interpretation of the min max is that P1(the maximizer) can see the action of P2(the minimizer)
- □ The safe strategy for P2 is to be conservative
- □ He will not regret his decision
- □ The same argument holds for P1

These conclusions generalize to any game with alternate play : in such games, there is no reason for rational players to ever regret their decision to play a security policy.

Security v.s. Regret: Simultaneous plays

Suppose players decide actions simultaneously, i.e., without knowing the others choice.

If both players use their respective security policies then

□ P1 selects row 3 (guarantees reward ≥ 0)

□ P2 selects column 3 (guarantees cost ≤ 2)

This leads to cost/reward

 $0 \in [V(A), V(A)] = [0, 2]$

Security v.s. Regret: Simultaneous plays

After the game is over

□ P2 is happy with choice since column 3 was the best response to row 3

□ P1 regrets choice: "if I knew P2 was going to play column 3, I would have played row 2, leading to reward 2 ≥ 0"

21

Security v.s. Regret: Simultaneous plays

دانتاه منسق توابد نسیرالدن دی

Perhaps they should have played

□ P1 selects row 2

P2 selects column 3

leading to cost/reward = 2

□ Now the minimizer regrets his choice

No further "a-posteriori" revision of their decisions would lead to a no-regret outcome

• Unlike alternate play, security policies may lead to regret in matrix games with simultaneous play

Definition: Pareto Optimality

An outcome is Pareto optimal if there is no other outcome which would give both players a higher payoff or would give one player the same payoff and the other player a higher payoff

	А	В	С
Х	1,3	0,0	-1,890
Y	2,2	0,2	0,4
Z	-1,4	-5,5	-1,1

Pareto Optimality

	А	В	С
Х	1,3	0,0	-1,890
Y	2,2	0,2	0,4
Z	-1,4	-5,5	-1,1

Pareto Optimality

	А	В	С
X	1,3	0,0	-1,890
Y	2,2	0,2	0,4
Z	-1,4	-5,5	-1,1

Pareto Optimality

	А	В	С
Х	1,3	0,0	-1,890
Y	2,2	0,2	0,4
Z	-1,4	-5,5	-1,1

