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Definition: (Pure saddle-point equilibrium):  
Let     define the matrix game. A pair of policies             is called a 

pure saddle-point equilibrium if

value           is the saddle-point value;

Saddle-point
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Row player has no incentive to deviate from his/her strategy
Column player has no incentive to deviate from his/her strategy
No player will regret his choice, if they both use these strategies
No player will benefit from an unilateral deviation from the 

equilibrium  (Pure Nash equilibrium )

Remember :A matrix game defined by A has a saddle-point equilibrium if and 
only if

is a saddle-point equilibrium
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Proposition (Min-Max Property)

For every finite matrix A, the following properties hold:

(i) Security levels are well defined and unique

(ii) Both players have security policies (not necessarily unique)

(iii) The security levels always satisfy

Security levels and policies
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Proof :
Assume that                                                    holds 

 Implies that
But from previous proposition we have
 It can only be the case if  

Saddle-point and security levels
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Proof:  Assume that                                         holds 

 Implies that

Saddle-point and security levels
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Two players: Donald T.  and Hillary C.
Both players have three strategies:
campaign the last day in Iowa (I)
campaign the last day in New York (NY)
campaign the last day in Texas (T)

Election games
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Hillary C. tries to maximize the voters that she wins from 
Donald T.

Donald T. tries to minimize the voters that he looses to 
Hillary C.

Election games
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 Hillary C. tries to maximize the voters
 Conservative policy for Hillary C.
 Choose  NY (Worst case gain of 0)

Election games
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 Donald T. tries to minimize the voters
 Conservative policy for Donald T.
 Choose  NY (Worst case loss of 0)

Election games
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 Only rational outcome: both players play strategy NY
 They cannot expect a better outcome with any other strategy

Election games
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The cell (NY,NY) is a saddle point:
 the cell has the smallest value in its  row
 column player has no incentive to deviate from his strategy
 the cell has the larger value in its column
 row player has no incentive to deviate from her strategy

Saddle-point equilibrium
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Consider the following setting of the Elections Game:

Election games (Multiple Saddle-points)
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Suppose that a game defined by a matrix A has two 
distinct saddle-point equilibria:           and
From previous Theorem, both have exactly the same 
value                    and
 and    are security policies for P1
 and     are security policies for P2

What about points           and            ?

Order interchangeability
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Proposition
(Order interchangeability). If           and           are saddle-
point equilibria for a matrix game defined by   , then
and           are also saddle-point equilibria for the same 
game and all equilibria have exactly the same value.

This property only holds for zero-sum games

Order interchangeability
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Consider the following setting of the Elections Game:

Election games
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Conservative strategy for Hillary C.
Choose  T (Worst case gain of 0)

Election games
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Conservative strategy for Donald T.
 Choose either NY or T (Worst case loss of 2)

Election games
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Assume P2 plays first. Question: would P2 be happy with his choice if 
he solves

 The interpretation of the min max is that P1(the maximizer) can see the action of 
P2(the minimizer)

 The safe strategy for P2 is to be conservative

 He will not regret his decision

 The same argument holds for  P1

These conclusions generalize to any game with alternate play : in such 
games, there is no reason for rational players to ever regret their 
decision to play a security policy.

Security v.s. Regret: Alternate play
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Suppose players decide actions simultaneously,  i.e.,  without knowing 
the others choice.

If both players use their respective security policies then

P1 selects row 3 (guarantees reward ≥ 0)

P2 selects column 3 (guarantees cost ≤ 2)

This leads to cost/reward

Security v.s. Regret: Simultaneous plays
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After the game is over
 P2 is happy with choice since column 3 was the best response to row 3
 P1 regrets choice: “if I knew P2 was going to play column 3, I would 

have played row 2, leading to reward 2 ≥ 0”

Security v.s. Regret: Simultaneous plays

21

I NY T

I 1 0 -2

NY 3 -1 2

T 3 2 0

Donald T.

H
ila

ry
 C

.
-2

-1

0

3 2 2



Perhaps they should have played
 P1 selects row 2
 P2 selects column 3
leading to cost/reward = 2

 Now the minimizer regrets his choice
 No further “a-posteriori” revision of their decisions would lead 

to a no-regret outcome

 Unlike alternate play, security policies may lead to regret in 
matrix games with simultaneous play

Security v.s. Regret: Simultaneous plays
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Consider the following setting of the Elections Game:

Dominant Strategy Equilibria
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 Consider the following setting of the Elections Game:

Observation:
 Strategy1(“Iowa”) is always better for Hillary C. than strategy 3 

(“Texas”)

Dominant Strategy Equilibria
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 Consider the following setting of the Elections Game:

Observation:
 Strategy1 (“Iowa”) is always better for Hillary C. than strategy 3 

(“Texas”)

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Observation:
 Hillary C. will never play strategy3; we can remove it

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Observation:
 Both strategy1 (“Iowa”) and strategy2 (“New York”) are always 

better for Donald T. than strategy3 (“Texas”)

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Observation:
 Donald T. will never play strategy3; we can remove it

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Observation:
 Strategy 1 (“Iowa”) is always better for Hillary C. than strategy 2 

(“NewYork”).

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Observation:
 Hillary C. will never play strategy 2; we can remove it

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Observation:
 Strategy 1 (“Iowa”) is always better for Donald T. than strategy 2 

(“NewYork”).

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Observation:
 Donald T. will never play strategy 2; we can remove it
 Conclusion: Both Donald T. and Hillary C. campaign in Iowa.

Dominant Strategy Equilibria
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Consider the following setting of the Elections Game:

Dominant Strategy Equilibria
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We say that row   strictly dominates row    if

which means that no matter what P2does, the maximizer 
P1 is always better off by selecting row   instead of row 

P1 will never select row 

Same holds true for column dominance

Strictly Dominating Policies
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We say that row   weakly dominates row    if

which means that no matter what P2does, the maximizer 
P1 loses nothing by selecting row   instead of row 

P1 can ignore row     without losing anything

Same holds true for column weak dominance

Weakly Dominating Policies
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Definition: Pareto Optimality

An outcome is Pareto optimal if there is no other outcome which 
would give both players a higher payoff or would give one player 
the same payoff  and the other player a higher payoff

Pareto Optimality
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Pareto Optimality

Pareto Optimality
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Pareto Optimality

Pareto Optimality
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Pareto Optimality
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