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Material

 Dynamic Non-cooperative Game Theory: Second Edition
 Chapter 2. 2 and 2. 3

 An Introductory Course in Non-cooperative Game Theory
 Chapter  4, 6

Zero-Sum Matrix Games (Mixed 
Strategies)
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Setting of  Two-Person Zero-Sum Games:
two players (“row player” and “column player”)
 row player chooses one out of m strategies, column player chooses 

one out of n strategies
Payoff matrix
 If row player plays   and column player plays 
 then, row player gains      and column   
player looses
 row player maximizes
 column player minimizes
Zero-Sum Property: One player wins whatever other player loses

Recap
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Definition: (Pure saddle-point equilibrium):  
Let     define the matrix game. A pair of policies             is called a 

pure saddle-point equilibrium if

value           is the saddle-point value;

 Saddle-point and security levels

Saddle-point
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Consider the following setting of the Elections Game:

Both players have three strategies:
 campaign the last day in Iowa (I)

 campaign the last day in New York (NY)

 campaign the last day in Texas (T)

Election games
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Conservative strategy for Hillary C.
 Choose  T (Worst case gain of 0)

Election games

6

I NY T

I 1 0 -2

NY 3 -1 2

T 3 2 0

Donald T.

H
ila

ry
 C

.
-2

-1

0



Conservative strategy for Donald T.
 Choose either NY or T (Worst case loss of 2)
 No Pure Nash Equilibrium exist

Election games
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Example: “Odds-and-Evens” Game
 if sum of both numbers is even: P1 wins1Euro, P2 looses 1 Euro
 if sum of both numbers is odd: P2 wins1 Euro, P1 looses1 Euro
 P1 maximizes

 P2 minimizes

 No Pure Nash Equilibrium exist
 No pure saddle point equilibrium

“Odds-and-Evens” Game
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Suppose you are playing “Odds-and-Evens” with a mind reader
 How do you avoid losing?
Answer: Don’t think! Instead flip a coin
At best, the mind reader can win half the time

“Odds-and-Evens” Game
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Intuitively, flipping a coin, i.e., playing 50% and 50% , 
introduces a third option for both players

“Odds-and-Evens” Game
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 a saddle point equilibrium exists  

“Odds-and-Evens” Game
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Consider the following game:
P1 maximizes
P2 minimizes

 No pure saddle point equilibrium
Assume that both players flip the coin. Does it work in this 

setting?

Example:
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 .
Notice that 
is not a saddle point:
 P1 can do better by switching to right
 P2 can do better by switching to down
What probabilities should each player use?

“Odds-and-Evens” Game
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Find a strategy for P1 that makes P2 in different from selecting 
up or down

Find a strategy for P2 that makes P1 indifferent from selecting 
left or right

Example:
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Find a strategy for P1 , i.e., find y that makes P2 indifferent 
from selecting up or down

 (expected payoff of game given that P2 plays up =
expected payoff of game given that P2 plays down)
 (expected payoff for left is a function of y)
 (expected payoff for right is a function of y)

Example:
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Find a strategy for P2 , i.e., find z that makes P1 indifferent from 
selecting left or right

Example:
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Find a strategy for P2 , i.e., find z that makes P1 indifferent from 
selecting left or right

 (expected payoff of game given that P1 plays left =
expected payoff of game given that P1 plays right)
 (expected payoff for left is a function of z)
 (expected payoff for right is a function of z)

Example:
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Find a strategy for P2 , i.e., find z that makes P1 indifferent from 
selecting left or right

Example:
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What is the expected payoff for the two players?                                     

 Expected payoff for both players                  

Example:
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Now the game has a saddle point equilibrium



 No player can do better by unilaterally changing their strategy
(Nash equilibrium)

Example:
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In mixed strategies:
• the players select their actions randomly according to a previously
selected probability distribution

Mixed Strategies
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A mixed policy for P1 is a set of numbers 

Where      is the probability that P1 uses to select the action
Similarly, A mixed policy for P2 is a set of numbers 

Where      is the probability that P2 uses to select the action
The sets    and    are called the probability simplexes
Pure policies still exists within the mixed action space

Mixed Strategies
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Objective (mixed policies): The player P1 wants to maximize the 
expected outcome                        and the player  P2 wants to 
minimize the same quantity. 

There are two common interpretations for mixed policies: 
 In the repeated game paradigm, the same two players face each other

multiple times. In each game they choose their actions randomly
according to pre-selected mixed policies (in-dependently from each
other and independently from game to game) and their goal is to
minimize/maximize the cost/reward averaged over all the games
played. This paradigm makes sense in many games in economics, e.g.,
in advertising campaigns or the tax-payers auditing; and also in
political/social "engineering”

Mixed Strategies
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 In the large population paradigm, there is large population of players 
P1 and another equally large population of players P2. All players only 
play pure policies, but the percentage of players that play each pure 
policy matches the probabilities of the mixed policies. Two players 
are then selected randomly from each population (independently) 
and they play against each other. The goal is to select a "good mix" 
for the populations so as to minimize/maximize the expected 
cost/reward. This paradigm also makes sense in some of the above 
examples, e.g., tax auditing, or workers compensation. In addition, it 
makes sense to some robust design problems.

Mixed Strategies
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The average security level for P1 (the maximizer) is defined by

Where 
The mixed security policy is

Mixed Strategies
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The average security level for P2 (the minimizer) is defined by

Where 
The mixed security policy is

Mixed Strategies
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Definition: (Mixed saddle-point equilibrium):  
A pair of policies defined through the probabilities                        
is called a mixed saddle-point equilibrium if

and             is the is called the saddle point value.
This is also called a Nash Equilibrium: no player can do 

better by unilaterally changing his strategy (includes both pure 
and mixed strategies)

Mixed Strategies
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Proposition (Min-Max Property)

For every finite matrix A, the following properties hold:

(i) Average security levels are well defined and unique

(ii)Both players have mixed security policies (not necessarily 
unique)

(iii) The security levels always satisfy

Mixed Strategies
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Proof :

Where                              is the ith canonical basis in Rn

follows from restricting the feasible region of y, since

Min-Max Property
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Proof :

Min-Max Property
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From Optimal control ,we know  that if X is a simplex, then

Using that

Proof for                             follows using similar arguments

Min-Max Property
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Proof for From                             , let     be a mixed security policy for 
P1 (the maximizer) 

Notice that for any vector  , since             ,then 

Letting             , then  

Min-Max Property

32

( ) ( )m mV A V A *y

*

( ) : max min

min

T
m z Zy Y

T

z Z

V A y A z

y A z







*y Yv

* maxT T

y Y
y v y v




v Az

*

( ) : max mi

ma

n

min

n )xmi : (

T
m z Zy Y

z Z

T

T

y mYz Z

V A y A z

V

y

A A

A z

y z















 



Theorem (Mixed saddle-point vs. security levels)

A matrix game defined by     has a mixed saddle-point 
equilibrium if and only if

In particular,                       
 is a mixed saddle-point equilibrium
 is the saddle point value
This condition holds for all matrices 

For any two player zero-sum game there exists a saddle 
point equilibrium (Nash equilibrium)

Mixed Strategies
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