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Zero-Sum Matrix Games (Mixed
Strategies)
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Material

® Dynamic Non-cooperative Game Theory: Second Edition

® Chapter 2.2 and 2. 3

e An Introductory Course in Non-cooperative Game Theory

® Chapter 4,6
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Setting of Two-Person Zero-Sum Games:
two players (“row player” and “column player”)

® row player chooses one out of m strategies, column player chooses

one out of n strategies , ,
Column player’s actions

Payoff matrix z
- . O 4y Qg AT
L It row player plays1 and column player plays] =
[ then, row player gains &; and column o |52 ][tz Qn
—
player looses  @;; %
J row player maximizes 8.
P y 5 aml a'm2 amn
J column player minimizes r:%

Zero-Sum Property: One player wins whatever other player loses
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‘ Saddle—point \ @

Definition: (Pure saddle—point equilibrium):

Let A define the matrix game. A pair of policies (i7, j) is called a
pure saddle-point equilibrium if

a. .2 a . Vied{l,...m} (rows - the maximizer)
a. . < a.. Vjed{l,...,n} (columns -the minimizer)
= a . <a. .<a.. Viedl...,m},Vjedl,...,n}

value & i is the saddle-point value;

= DSaddle-point and security levels
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Election games I @

J Consider the following setting of the Elections Game:

[ Both players have three strategies:
0 campaign the last day in Iowa (I)
0 campaign the last day in New York (NY)
0 campaign the last day in Texas (T)

DonaldT.
I NY | T
| 1 0 -2

NY | 3 -1 2

Hilary C.
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‘ Election games

Hilary C.

DonaldT.
({1 INDYCLLL T
I 1 0 -2
NY | 3 -1 2
T 3 2 0

[ Conservative strategy for Hillary C.

L

[ Choose T (Worst case gain of 0)
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Election games

Hﬂary C.

DonaldT.
({1 INDYCLLL T
I 1 0 -2
NY | 3 -1 2
T 3

3

)

[ Conservative strategy for Donald T.

L

J Choose either NY orT (Worst case loss of 2)
[ No Pure Nash Equilibrium exist
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{“Odds—and-Evens” Game _} @
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Example: “Odds-and-Evens” Game
if sum of both numbers is even: P, wins1Euro, P, looses 1 Euro

if sum of both numbers is odd: P, wins1 Euro, P, looses1 Euro

J P, maximizes P,
J P, minimizes ol |l &
—| odd 1 -1 -1
A
even | -1 1 -1
[ No Pure Nash Equilibrium exist 1 I

dV(A)=-1<1= \7( A)= No pure saddle point equilibrium
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“Odds-and-Evens” Game j @
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P,

odd | even

— | odd 1 -1

even -1 1

Suppose you are playing “Odds-and-Evens” with a mind reader
J How do you avoid losing?

[ Answer: Don’t think! Instead flip a coin
(JAt best, the mind reader can win half the time
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introduces a third option for both players

PZ
50%/
odd | even 5004
odd 1 -1 0
even -1 1 0
50%/
5004 0 0 0

~
“Odds-and-Evens” Game j @
\-’;"&:,«‘ ' /__"; ':i;‘;,z I

Intuitively, flipping a coin, i.e., playing 50% and 50%

pJ
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“Odds-and-Evens” Game j @
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OV (A)=0=V (A")= asaddle point equilibrium exists
(50% / 50%,50% / 50%)

50%/

odd | even 5004

odd 1 -1 0 -1

A~ |even| -1 1 0) 1

50%/
50% 0 0 0 @




/

l Example: l @

Consider the following game:

DPl maximizes P,
DPZ minimizes
up | down
_| left 3 -1 -1

right -2 0 -2

dV (A)=-1<0 :V_(A):> No pure saddle point equilibrium
[ Assume that both players flip the coin. Does it work in this

setting?
(-
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ccO dds—and_EVenS” e _J
P ) G ,_—-';,;,J‘.ﬂ’ 2,

u down 209
P 50%
left | 3 -1 1 1
_ AT | right | -2 0 -1 D)
a V(A)=-05<0=V(A). LHT
[ Notice that(%left/%right,%up/%down) 500/(:) 0.5 | -0.5 0

is not a saddle point:
A P, can do better by switching to right 3 @ 1

P, can do better by switching to down
[ What probabilities should each player use?
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(JFind a strategy for P, that makes P, in ditferent from selecting
up or down

(JFind a strategy for P, that makes P, inditferent from selecting
left or right

P2
Up | Down
Z 1-z
Left
— 3 -1
A y
Right
E 2l o
1-y

~
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{Examp]e |
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[ Find a strategy for P, ,i.e., find y that makes P, indifferent

from selecting up or down

: o
Ch 7 W)

PZ
Up |Down
V4 1-z
Left
3 -1
y
Right
ST o
1-y

= E(P,)=E(P, )(expected payoff of game given that P, plays up =

expected payoft of game given that P, plays down)
« E(P,)=9(y) (expected payoff for left is a function of y)
= E(Py)=9(Y) (expected payott for right is a function of y)
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&(ample :

Find a strategy for P, ,i.e., find z that makes P, indifferent from

o

selecting left or right

E(P,)=9(y)=3y+(-2)1-y)=5y-2
E(P,)=9(y)=-1y+0(1-y)=-y
E(P,)=E(Py)=0y—-2=-y

V=73

PZ
Up |Down
Z 1-z
L eft
3 -1
y
Right
Szl ] o
1-y
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{Example :

N

Find a strategy for P, ,i.e., find z that makes P, indifferent from

selecting left or right

PZ
Up |Down
V4 1-z
Left
3 -1
y
Right
ST o
1-y

= E(P,)=E(P,)(expected payoff of game given that P, plays left =

expected payoff of game given that P, plays right)
= E(P,)=1(2) (expected payoff for left is a function of z)

= E(P,)=1(2) (expected payott for right is a function of z)




selecting left or right

E(P,)=f(z2)=3z+(-1)(1-2)=4z-1

E(P,)=f(z)=-2z+0(1-2)=-2z2
E(P,)=E(P,)=4z-1=-22

-5

Find a strategy for P, ,i.e., find z that makes P, indifferent from

P2
Up |Down
Z 1-z
L eft
3 -1
y
Right
Szl ] o
1-y




d What is the expected payoff for the two players?

P,

Up |Down
Z 1-z

- | L
o eft 3 1
y
[ Expected payoft for both players Right
2 0
1y

3}}/6%+(1)%%+(2)%%+(O)%%

o y




J Now the game has a saddle point equilibrium

( % Ieft/% right, %up/ % down)
1 V(A)=- Y5 =V(A)
J No player can do better by unilaterally Changing their strategy

(Nash equilibrium)

P2
Up | Down
Z 1-z
L eft
3 -1
y
Right
SR
1-y




In mixed strategies:

* the players select their actions randomly according to a previously

selected probability distribution

Column player’s actions

9]
5 e 4 T
-
Q
< Il |][|/Gat| [ (| 8a2f (||| 111]|[|E1n
"
% Yo Ay Qyp ... Qyy
gy
2
S
ad
ym am1 a‘m2 amn




A mixed policy for P is a set of numbers
Y ={(yyYn): D Vi =Ly, 20,i=1...,m}
=1

Where Y; is the probability that P, uses to select the action 1edl,...

Similarly, A mixed policy f(%r P, is a set of numbers

z={(z,....2,):>.2;,=1,2,20, j=1...,n}
=1

 The setsY and Z are called the probability simplexes

[ Pure policies still exists within the mixed action space

o

Where Z; is the probability that P, uses to select the action Je{L,...




[ Objective (mixed policies): The player P, wants to maximize the
expected outcome J = yT A z and the player P, wants to

minimize the same quantity.
+¢* There are two common interpretations for mixed policies:

[ In the repeated game paradigm, the same two players face each other
multiple times. In each game they choose their actions randomly
according to pre-selected mixed policies (in-dependently from each
other and independently from game to game) and their goal is to
minimize/maximize the cost/reward averaged over all the games
played. This paradigm makes sense in many games in economics, e.g.,
in advertising campaigns or the tax-payers auditing; and also in
political/social "engineering”
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dIn the large population paradigm, there is large population of players

P, and another equally large population of players P,. All players only
play pure policies, but the percentage of players that play each pure
policy matches the probabilities of the mixed policies. Two players
are then selected randomly from each population (independently)
and they play against each other. The goal is to select a "good mix"
for the populations so as to minimize/maximize the expected
cost/reward. This paradigm also makes sense in some of the above
examples, e.g., tax auditing, or workers compensation. In addition, it
makes sense to some robust design problems.




The average security level for P, (the maximizer) is defined by

V_(A):=max miny' Az

yeY ze’

m n
=max min > > yiza,

yey i=1 j=1
=max min E_(a.
yeY zel :P( IJ)

Where P((P, playing i)~ (P, playing j))=y,z; forVi,j

The mixed security policy is

y eargmax miny' Az
yEY el
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The average security level for P, (the minimizer) is defined by

V_(A)=min max y' Az

zeZ yeY

m n
= min max D> vz,

ye¥ i1 =
=min max E, (g; )
zeZ yeY

Where P((P, playing i) n (P, playing j))=y,z; forVi,j

The mixed security policy is

Z eargminmax y' Az
z2eZ yeY
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Definition: (Mixed saddle-point equilibrium):
A pair of policies defined through the probabilities (y,z2)eYxZ

is called a mixed saddle-point equilibrium it

V'AZ > y' Az vyeY (the maximizer)

y'AZ < yTAzZ VzeZ  (the minimizer)

and V' A7 is the is called the saddle point value.

This is also called a Nash Equilibrium: no player can do
better by unilaterally changing his strategy (includes both pure
and mixed strategies)
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Proposition (Min-Max Property)

For every finite matrix A, the following properties hold:
(i) Average security levels are well defined and unique

(ii)Both players have mixed security policies (not necessarily

unique)

(iii) The security levels always satisty

V(A) <V, (A) <V, (A) < V(A

o




Proof':

V_(A)=max miny' Az

yeY zel

> max miny Az
ye{e,,....e,} el

Where € =(0,...,1,...,0) is the i™ canonical basis in R™
follows from restricting the feasible region of y, since

{e,,....e Y




Proof':

V_(A):=max miny Az

yeY zeZ

> max miny Az
ye{e,,...eqt 2€Z

= max mine' Az
ie{l,...m} zeZ

= max minfa, ... a_|z
ie{l,...m} zeZ [ 11 |n]

n

= max min » z.a.

I ]
ie{l,...m} zeZ =




From Optimal control ,we know that if X is a simplex, then
n

minY x4 < min_ g
X -
j=1

je{1,...,n}

st. xe X

Using that V_(A):=max min y Az
yeY el

> max miny Az
ye{e,,...e} el

n

= max min za
ie{l,...m} zeZ [

= max_ min a; =V (A)
ie{l,....m} je{l,...n}

Proof for \7m (A) < V (A) follows using similar arguments
o
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Proof for From V _(A) §\7m (A) , let y* be a mixed security policy for

P, (the maximizer) V_(A):=max miny Az

yeY zel

=miny " Az

YA=YA

Notice that for any vectorV, since y* cVY ,then

y'v<max y'v
eY
Letting V= AZ, then !

V_(A):=max miny Az

yeY el

=miny ' Az

zeZ

<minmaxy' Az:=V_(A)
zel  yeY

o
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Theorem (Mixed saddle—point VS. security levels)

A matrix game defined by A has a mixed saddle-point
equilibrium if and only if
V_(A)=max miny'Az=min maxy'Az=V_(A)
yeY zel el yeY
In particular,
a (y*, Z*) is a mixed saddle-point equilibrium
av _ (A) :V_m (A) is the saddle point value

This condition holds for all matrices A

For any two player Zero-sum game there exists a saddle
point equilibrium (Nash equilibrium)
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