نظریه بازیها Game Theory

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Optimization

Material

- Convex Optimization, Stephen Boyd, Lieven Vandenberghe
 - Chapters 4.1 and 4.3

Optimization

Optimization problem: $\min_{x} f_{o}(x)$ subject to (s.t) $f_{i}(x) \le b_{i}, i = \{1, ..., m\}$ The problem has several ingredients: The vector x collects the decision variables (optimization variables) $f_{o}(x) \quad \mathbb{R}^{n} \to \mathbb{R}$ objective function $f_{i}(x) \quad \mathbb{R}^{n} \to \mathbb{R}$ constraint functions

Optimal solution: x^* has smallest value of f_o among all vectors that satisfy the constraints

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

$$\min_{x} \left\| Ax - b \right\|_{2}^{2}$$

solving least-squares problems

- Analytical solution: $x^* = (A^T A)^{-1} A^T b$
- □ reliable and efficient algorithms and software
- \Box computation time proportional to $n^2 k$ ($A \in \mathbb{R}^{k \times n}$); less if structured
- □ a mature technology

using least-squares

- □ least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming:

 $\min_{x} c^{T} x$ s.t. $a_{i}^{T} x \leq b_{i}, \quad i = \{1, \dots, m\}$

solving linear programs

no analytical formula for solution

□ reliable and efficient algorithms and software

 \Box computation time proportional to n^2m if m > n; less with structure

□ a mature technology

using linear programming

□ a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 -or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

 $\min_{x} f_o(x)$ subject to(s.t) $f_i(x) \le b_i, \quad i = \{1, \dots, m\}$

solving linear programs

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

If $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

Convex optimization problem

solving convex optimization problem

 \Box no analytical formula for solution

□ reliable and efficient algorithms

• computation time proportional to max $\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives

□ almost a technology

using convex optimization

many tricks for transforming problems into convex form

A simple optimization problem:

$$\min_{x \in R} |x_1 + 6| + |x_2 - 4|$$
st $3 \le x_1 \le 5, -2 \le x_2 \le 2$

This problem is equivalent to a linear program (more on this later).

- □ Huge variety of software for solving LPs and QPs (and other standard types):
- Examples: MATLAB (linprog/quadprog), CPLEX, Gurobi, GLPK, XPRESS, qpOASES, OOQP, FORCES, SDPT3, Sedumi, MOSEK,....
- □ There is no standard interface to solvers they are almost all different.
- General purposes modeling tools allow easy switching between solvers: Examples: Yalmip ,CVX, GAMS, AMPL, TOMLAB,....

V•T•E	Mathematical optimization software [hide]
Data formats	LP · MPS · nl · OptML · OSiL · sol · xMPS
Modeling tools	AIMMS · AMPL · APMonitor · CMPL · CVX · CVXOPT · CVXPY · ECLiPSe-CLP · GAMS · GNU MathProg · JuMP · LINDO · OPL · MPL · OptimJ · PICOS · PuLP · Pyomo · ROML · TOMLAB · Xpress-Mosel · YALMIP · ZIMPL
LP, MILP* solvers	ABACUS* • APOPT* • Artelys Knitro* • BCP* • BDMLP • BPMPD • BPOPT • CLP • CBC* • CPLEX* • CSDP • DSDP • FortMP* • GCG* • GIPALS32 • GLPK/GLPSOL* • Gurobi* • HOPDM • LINDO* • Ip_solve* • LOQO • MINOS • MINTO* • MOSEK* • OOPS • OOQP • PCx • QSopt • SAS/OR* • SCIP* • SoPlex • SOPT-IP* • Sulum Optimization Tools* • SYMPHONY* • XA* • Xpress-Optimizer*
QP, MIQP* solvers	APOPT* • Artelys Knitro* • BPMPD • BPOPT • BQPD • CBC* • CLP • CPLEX* • FortMP* • GIoMIQO* • Gurobi* • IPOPT • LINDO* • LSSOL • LOQO • MINOS • MOSEK* • OOPS • OOQP • QPOPT • QPSOL • SCIP* • XA Quadratic Solver • Xpress-Optimizer*
QCP, MIQCP* solvers	APOPT* · Artelys Knitro* · BPMPD · BPOPT · CPLEX* · GIoMIQO* · Gurobi* · IPOPT · LINDO* · LOQO · MINOS · MOSEK* · SCIP* · Xpress-Optimizer* · Xpress-SLP*
SOCP, MISOCP* solvers	CPLEX* · DSDP · Gurobi* · LINDO* · LOQO · MOSEK* · SCIP* · SDPT3 · SeDuMi · Xpress-Optimizer*
SDP, MISDP* solvers	CSDP · DSDP · MOSEK · PENBMI · PENSDP · SCIP-SDP* · SDPA · SDPT3 · SeDuMi
NLP, MINLP* solvers	ALGENCAN · AlphaECP* · ANTIGONE* · AOA* · APOPT* · Artelys Knitro* · BARON* · Bonmin* · BPOPT · CONOPT · Couenne* · DICOPT* · FilMINT* · FilterSQP · Galahad library · ipfilter · IPOPT · LANCELOT · LINDO* · LOQO · LRAMBO · MIDACO* · MILANO* · MINLP BB* · MINOS · Minotaur* · MISQP* · NLPQLP · NPSOL · OQNLP* · PATHNLP · PENNON · SBB* · SCIP* · SNOPT* · SQPIab · WORHP · Xpress-SLP*
GO solvers	BARON · Couenne* · LINDO · SCIP
CP solvers	Artelys Kalis · Choco · Comet · CPLEX CP Optimizer · Gecode · Google CP Solver · JaCoP · OscaR
Metaheuristic solvers	OptaPlanner · LocalSolver
	List of optimization software · Comparison of optimization software

A simple optimization problem:

$$\min_{x \in R} |x_1 + 6| + |x_2 - 4|$$

s.t. $3 \le x_1 \le 5, -2 \le x_2 \le 2$

The **YALMIP toolbox** for Matlab (from ETH / Linkoping):

%make variables sdpvar x1 x2; %define cost function f = abs(x1 + 6) + abs(x2 - 4);%define constraints $X = set(3 \le x1 \le 5) + ...$ $set(-2 \le x2 \le 2);$ %solve solvesdp(X,f);

11

A simple optimization problem:

$$\min_{x \in R} |x_1 + 6| + |x_2 - 4|$$

st $3 \le x_1 \le 5, -2 \le x_2 \le 2$

The **CVX toolbox** for Matlab (from Stanford):

cvx_begin variables x1 x2 % define variables %define cost function and constraints minimize(abs(x1 + 6) + abs(x2 - 4)) subject to $3 \le x1 \le 5$ $-2 \le x2 \le 2$ cvx _end %solves automatically

□ The optimal solution of LP lies one of the corner points or facets of the feasible region

Linear Program (LP)

□ The optimal solution of LP lies one of the corner points or facets of the feasible region

$$\max_{x_1, x_2} x_1 + x_2$$

s.t. $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$
 $2x_1 + x_2 \le 2$

Vector c= (-1-1)(change maximization to minimization) Optimal solution: $(x_1^*, x_2^*) = (0.5, 1)$

Linear Program (LP)

□ The optimal solution of LP lies one of the corner points or facets of the feasible region

□ The optimal solution of LP lies one of the corner points or facets of the feasible region

$$\max_{x_1, x_2} x_1 + x_2$$

s.t. $0 \le x_1 \le 1$
 $0 \le x_2 \le 1$
 $x_1 + x_2 \le \frac{3}{2}$

Optimal solution not unique:

$$(x_1^*, x_2^*) = \lambda(0.5, 1) + (1 - \lambda)(1, 0.5)$$
 $\lambda \in [0, 1]$

 x_2

Optimizing over simplexes

A simplex is defined as follows:

$$X := \{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, x_i \ge 0, i = 1, \dots, n \}$$

Consider the optimization problem:

$$\min_{x} \sum_{j=1}^{n} x_{j} \beta_{j} \qquad \Leftrightarrow \min_{j \in \{1, \dots, n\}} \beta_{j}$$

s.t. $x \in X$

 \Box Optimal x^* lies in the corner point of simplex X. Similarly,

 $\max_{x} \sum_{j=1}^{n} x_{j} \beta_{j} \qquad \Leftrightarrow \max_{j \in \{1, \dots, n\}} \beta_{j}$ s.t. $x \in X$

Epigraph problem form

The epigraph form of the standard optimization problem is the problem

 $\min_{x,t} t$ s.t. $f_o(x) \le t$ $t \in \mathbb{R}, x \in \mathbb{R}^n$ $f_i(x) \le b_i, \quad i = \{1, \dots, m\}$

■ We can easily see that it is equivalent to the original problem:(*x*,*t*) is optimal for the epigraph form if and only if *x* is optimal for the standard optimization problem and $t = f_o(x)$. Note that the objective function of the epigraph form problem is a linear function of the variables *x*,*t*.

Example Linear Programs

Piecewise affine minimization

is equivalent to an LP:

 $\min_{x} [\max_{i=1,...,m} \{c_{i}x+d_{i}\}]$ s.t. $Ax \le b$ $\min_{x,t} t$ s.t. $c_{i}x+d_{i} \le t \quad i = \{1,...,m\}$ $Ax \le b$

Trick was to add variables and write the problem in epigraph form.

Recap : Mixed Strategies

In mixed strategies:

□ the players select their actions randomly according to a previously selected probability distribution

A mixed policy for P_1 is a set of numbers

$$Y = \{(\mathbf{y}_1, \dots, \mathbf{y}_m) : \sum_{i=1}^m y_i = 1, y_i \ge 0, i = 1, \dots, m \}$$

 \Box A mixed policy for P_2 is a set of numbers

$$Z = \{(z_1, \dots, z_n) : \sum_{j=1}^n z_j = 1, z_j \ge 0, j = 1, \dots, n \}$$

Column player's actions

Recap:Mixed Strategies

Theorem (Mixed saddle-point vs. security levels)

A matrix game defined by *A* has a **mixed saddle-point equilibrium** if and only if

$$\underline{V}_m(A) = \max_{y \in Y} \min_{z \in Z} y^T A z = \min_{z \in Z} \max_{y \in Y} y^T A z = \overline{V}_m(A)$$

In particular,

 \Box (y^{*}, z^{*}) is a mixed saddle-point equilibrium

 $\Box V_m(A) = V_m(A)$ is the saddle point value

This condition holds for all matrices A

For any two **player zero-sum game** there exists a saddle point equilibrium (Nash equilibrium)

□ You can check this condition by just checking $V_m(A) = \overline{V_m}(A)$

Computing Mixed Strategies

To compute the mixed security policy for P_1 (the maximizer) we need to solve

$$y^* \in \underset{y \in Y}{\operatorname{arg\,max}} \min_{z \in Z} y^T A z$$

To compute the mixed security policy for_2 (the minimizer) we need to solve

$$z^* \in \underset{z \in Z}{\operatorname{arg\,min}} \max_{y \in Y} y^T A z$$

Optimizing over simplexes

A simplex is defined as follows:

$$X := \{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, x_i \ge 0, i = 1, \dots, n \}$$

Consider the optimization problem:

$$\min_{x} \sum_{j=1}^{n} x_{j} \beta_{j} \qquad \Leftrightarrow \min_{j \in \{1, \dots, n\}} \beta_{j}$$

s.t. $x \in X$

 \Box Optimal x^* lies in the corner point of simplex X. Similarly,

$$\max_{x} \sum_{j=1}^{n} x_{j} \beta_{j} \qquad \Leftrightarrow \max_{j \in \{1, \dots, n\}} \beta_{j}$$

s.t. $x \in X$

Computing Mixed Strategies

Computing the security strategy for P_1 (the maximizer)

$$\underline{V}_m(A) \coloneqq \max_{y \in Y} \min_{z \in Z} y^T A \ z = \max_{y \in Y} \min_{z \in Z} \sum_{i=1}^m \sum_{j=1}^n z_j y_i a_{ij}$$

Remembering that Z is a simplex, if we look at the inner minimization

$$\min_{z \in Z} \sum_{i=1}^{m} \sum_{j=1}^{n} z_j y_i a_{ij} \xrightarrow{Z \text{ is a simplex}} \min_{j \in \{1, \dots, n\}} \sum_{i=1}^{m} y_i a_{ij}$$
$$= \min\{\sum_{i=1}^{m} y_i a_{i1}, \dots, \sum_{i=1}^{m} y_i a_{im}\}$$

Computing Mixed Strategies

To compute the mixed security policy for P_1 we need to solve

$$\underline{V}_m(A) \coloneqq \max_{y \in Y} \min_{z \in Z} y^T A z = \max_{y \in Y} \min\{\sum_{i=1}^m y_i a_{i1}, \dots, \sum_{i=1}^m y_i a_{im}\}$$

 The resulting problem requires maximizing a convex piecewise linear function which is equivalent to the following linear program
 <u>V</u>_m(A) := max t

$$m(A) := \max_{y,t} t$$

$$s.t. \sum_{i=1}^{m} y_i a_{ij} \ge t \qquad j = 1, \dots, n$$

$$y \in Y, t \in \mathbb{R}$$

Piecewise affine maximization

Piecewise affine maximization

is equivalent to an LP:

 $\max_{x} [\min_{i=1,...,m} \{c_{i}x+d_{i}\}]$ s.t. $Ax \le b$ $\max_{x,t} t$ s.t. $c_{i}x+d_{i} \ge t \quad i = \{1,...,m\}$ $Ax \le b$

Trick was to add variables and write the problem in epigraph form.

• Where $= (1, ..., 1)^T \in \mathbb{R}^m$ is the vector ones

• Yalmip code for solving the LP for P₂

$$\overline{V}_{m}(A) \coloneqq \min_{z,t} t$$

$$s.t. Az \leq t$$

$$1^{T} z = 1$$

$$z \geq 0$$

$$z \in \mathbb{R}^{n}, t \in \mathbb{R}$$

Computing Mixed Strategies

- Yalmip code for solving the LP for P₂
- m = 5; n = 10; % Define the matrix defining the zero-sum game
- A = rand(m,n);
- z = sdpvar(n, 1); % Define optimization variables
- t = sdpvar(1,1);
- obj = t; % Define objective function
- % Define constraints

constraints = [A*z <= ones(m,1)*t, sum(z) == 1, z>= 0]; optimize(constraints,obj); % Solve optimization problem SecurityLevel = double(t) % Get solution SecurityPolicy = double(z)