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Material

 Convex Optimization, Stephen Boyd, LievenVandenberghe
 Chapters 4.1 and 4.3

Optimization
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Optimization problem:

The problem has several ingredients:

The vector     collects the decision variables (optimization variables)

 objective function

 constraint functions

Optimal solution:     has smallest value of     among all vectors that

satisfy the constraints

Optimization
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general optimization problem

 very difficult to solve

methods involve some compromise, e.g., very long computation 
time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and 
reliably

 least-squares problems

 linear programming problems

 convex optimization problems

Solving optimization problems

4



solving least-squares problems

Analytical solution: 

 reliable and efficient algorithms and software

 computation time proportional to        (               ); less if structured

 a mature technology

using least-squares

 least-squares problems are easy to recognize

 a few standard techniques increase flexibility (e.g., including weights,  
adding regularization terms)

Least-squares

5

2n k

2

2
min

x
Ax b

k nA 

* 1( )T Tx A A A b



solving linear programs

 no analytical formula for solution

 reliable and efficient algorithms and software

 computation time proportional to          if            ; less with structure

 a mature technology

using linear programming

 a few standard tricks used to convert problems into linear programs 
(e.g., problems involving    -or    -norms, piecewise-linear functions)

Linear programming:
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solving linear programs

• objective and constraint functions are convex:

If 

• includes least-squares problems and linear programs as special cases

Convex optimization problem
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solving convex optimization problem

 no analytical formula for solution

 reliable and efficient algorithms

 computation time proportional to max{                 }, where F

is cost of evaluating     ‘s   and their first and second derivatives

 almost a technology

using convex optimization

many tricks for transforming problems into convex form

Convex optimization problem

8

3 2, ,n n m F

if



A simple optimization problem: 

This problem is equivalent to a linear program (more on this later).
 Huge variety of software for solving LPs and QPs (and other standard 

types):
 Examples: MATLAB (linprog/quadprog), CPLEX, Gurobi, GLPK, 

XPRESS, qpOASES, OOQP, FORCES, SDPT3, Sedumi, MOSEK,,...
 There is no standard interface to solvers – they are almost all different.
 General purposes modeling tools allow easy switching between solvers:   

Examples: Yalmip ,CVX, GAMS, AMPL, TOMLAB,….

Solving optimization problems
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Solving optimization problems
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A simple optimization problem: 

The YALMIP toolbox for Matlab (from ETH / Linkoping):
%make variables
sdpvar x1 x2;
%define cost function
f = abs(x1 + 6) + abs(x2 - 4);
%define constraints
X = set(3 <= x1 <= 5) + ...
set( -2 <= x2 <= 2);
%solve
solvesdp(X,f);

Solving optimization problems
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A simple optimization problem: 

The CVX toolbox for Matlab (from Stanford):
cvx_begin
variables x1 x2 % define variables
%define cost function and constraints
minimize(abs(x1 + 6) + abs(x2 - 4))
subject to
3 <= x1 <= 5
-2 <= x2 <= 2
cvx _end %solves automatically

Solving optimization problems
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The optimal solution of LP lies one of the corner points or facets

of the feasible region

Linear Program (LP)
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The optimal solution of LP lies one of the corner points or facets

of the feasible region

Vector c= (−1−1)(change maximization

to minimization)

Optimal solution:

Linear Program (LP)
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The optimal solution of LP lies one of the corner points or facets

of the feasible region

Linear Program (LP)
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The optimal solution of LP lies one of the corner points or facets

of the feasible region

Optimal solution not unique:

Linear Program (LP)
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A simplex is defined as follows:

Consider the optimization problem:

Optimal     lies in the corner point of simplex X. Similarly,

Optimizing over simplexes
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The epigraph form of the standard optimization problem is the problem

We can easily see that it is equivalent to the original problem:        is 
optimal for the epigraph form if and only if    is optimal for the 
standard optimization problem and                  . Note that the 
objective function of the epigraph form problem is a linear function 
of the variables .                     

Epigraph problem form
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Piecewise affine minimization

is equivalent to an LP:

 trick was to add variables and write the problem in epigraph form.                 

Example Linear Programs
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In mixed strategies:
 the players select their actions randomly according to a previously
selected probability distribution
A mixed policy for P1 is a set of numbers 

A mixed policy for P2 is a set of numbers

Recap :Mixed Strategies
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Definition: (Mixed saddle-point equilibrium):  
A pair of policies defined through the probabilities                        
is called a mixed saddle-point equilibrium if

and             is the is called the saddle point value.
This is also called a Nash Equilibrium: no player can do 

better by unilaterally changing his strategy (includes both pure 
and mixed strategies)

Recap:Mixed Strategies
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Theorem (Mixed saddle-point vs. security levels)

A matrix game defined by     has a mixed saddle-point 
equilibrium if and only if

In particular,                       
 is a mixed saddle-point equilibrium
 is the saddle point value
This condition holds for all matrices 

For any two player zero-sum game there exists a saddle 
point equilibrium (Nash equilibrium)

You can check this condition by just checking 

Recap:Mixed Strategies
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To compute the mixed security policy for P1 (the maximizer) we need 
to solve

To compute the mixed security policy forP2 (the minimizer) we need to 
solve

Computing Mixed Strategies
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A simplex is defined as follows:

Consider the optimization problem:

Optimal     lies in the corner point of simplex X. Similarly,

Optimizing over simplexes
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Computing the security strategy for P1 (the maximizer)

Remembering that      is a simplex, if we look at the inner minimization

Computing Mixed Strategies
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To compute the mixed security policy for P1 we need to solve

 The resulting problem requires maximizing  a convex piecewise 
linear  function which is equivalent to the following linear 
program

Computing Mixed Strategies
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Piecewise affine maximization

is equivalent to an LP:

 trick was to add variables and write the problem in epigraph form.                 

Piecewise affine maximization
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 In compact form,

 Where                               is the vector ones

Computing Mixed Strategies
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 Following similar arguments, we can show that P2 can compute his 
security strategy solving the following linear optimization problem

 Where                               is the vector ones

Computing Mixed Strategies
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 Yalmip code for solving the LP for P2

Computing Mixed Strategies
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 Yalmip code for solving the LP for P2

m = 5; n = 10; % Define the matrix defining the zero-sum game
A = rand(m,n);
z = sdpvar(n,1); % Define optimization variables
t = sdpvar(1,1);
obj = t; % Define objective function
% Define constraints
constraints = [A*z <= ones(m,1)*t, sum(z) == 1, z>= 0];
optimize(constraints,obj); % Solve optimization problem
SecurityLevel = double(t) % Get solution
SecurityPolicy = double(z)

Computing Mixed Strategies
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