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® Convex Optimization, Stephen Boyd, Lieven Vandenberghe
® Chapters 4.1 and 4.3




Optimization problem:
min f_(X)

subjectto(st) f.(x)<b, i1={L...,m}
The problem has several ingredients:

[ The vector X collects the decision variables (optimization variables)
| fo (X) R" >R objective tunction
af(x) R"—>R constraint functions

Optimal solution: X has smallest value of f, among all vectors that

satisfy the constraints
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general optimization problem

dvery difficult to solve

[ methods involve some compromise, e.g., very long computation

time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and

reliably
[ least-squares problems
U linear programming problems

[ convex optimization problems
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‘ Least—squares \ @

min | Ax —bHi
solving least-squares problems
| Analytical solution: X = ( Al A)_1 A'b
H reliable and efficient algorithms and software
[ computation time proportional to n’k (Ae R ); less if structured
[ a mature technology
using least-squares
[ least-squares problems are easy to recognize

a few standard techniques increase flexibility (e.g., including weights,

adding regularization terms)




/

o

Linear programming:

min ¢’ x
st. a'x<hb, i={,...,,m}

solving linear programs

[ no analytical formula for solution

{ reliable and efficient algorithms and software

d computation time proportional to n°m if M>N; less with structure
[ a mature technology

using linear programming

a few standard tricks used to convert problems into linear programs

(e.g., problems involving {1 or! norms, piecewise-linear functions)
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‘ Convex optimization problem \ @
Sy 7

min f_(X)
subjectto(st) f.(x)<b, i={1,...,m}
solving linear programs

o obj ective and constraint functions are convex:

fi(ax+ By) <af (x)+ Bfi(y)

If a+pf=1 a=20 20

e includes least—squares problems and linear programs as special cases
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Convex optimization problem l @

¢, e :Jg.
J,C’,,h/“ P17 W)

solving convex optimization problem

[ no analytical formula for solution

 reliable and efficient algorithms

J computation time proportional to max{ n°,n’m, F} , where F
is cost of evaluating fi‘s and their first and second derivatives
[ almost a technology

using convex optimization

d many tricks for transforming problems into convex form
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Solving optimization problems

A simple optimization problem:
min |x, +6|+|x, — 4

X eR

st 3<x,<5 —-2<x,<2

This problem is equivalent to a linear program (more on this later).

[ Huge variety of software for solving LPs and QPs (and other standard
types):

0 Examples: MATLAB (linprog/quadprog), CPLEX, Gurobi, GLPK,
XPRESS, qpOASES, OOQP, FORCES, SDPT3, Sedumi, MOSEK,, ...

(] There is no standard interface to solvers — they are almost all different.

[ General purposes modeling tools allow casy switching between solvers:

Examples: Yalmip ,CVX, GAMS, AMPL, TOMLAB,....
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Solving optimization problems
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Cata formacts

Modeling tools

LP, MILP® solvers

QP, MIGP* solvers

QCP, MIQCP® solvers

SOCP, MISOCP* solvers
SDP, MISDP® solvers
NLP, MINLP* solvers

G0 solvers
CP solvers

Metaheuristic solvers

Mathematical optimization software [hide]
LE - MES - nl - Opthil - Q8L - s0f - xMPS
AIMMS - AMPL - APMonitar - CMPL - CVX - CVXOPT - CVXPY - ECLIPSe-CLP - GAMS - GNU MathProg - JuMP
-LINDO - OPL - MPL - OptimJ - PICOS - PULP - Pyomo - ROML - TOMLAB - Xpress-Mosel - YALMIP - ZIMPL

ABACUS® - AFOPT® - Artelys Knitro* - BCF* - BDMLF - BFMFD - BFOPT - CLF - CBC* - CPLEX® - CSDFP - DSDF
s ForMP* - GCG* - GIPALS3Z - GLPKI/GLPSOL® - Gurabi* - HOPDM - LINDO® « lp_solve® « LOQO - MINOS -
MINTO® - MOSEK® - OOPS - O0OQP - PCx - QSopt - SAS/IOR® - SCIP* - SoPlex - SOPT-IP* - Sulum Optimization
Tools® - SYMPHONY® « XA* - Xpress-Optimizer®

APOPT* - Artelys Knitro* - BPMPD - BROPT - BQPD - CBC* - CLP - CPLEX® - FortMP* - GloMIGQO* - Gurobi® -
IPOPT - LINDO* - LSSOL - LOQO - MINCS - MOSEK* - OOPS - QOQP - QGPCPT -QPSOL - SCIP* -
XA Quadratic Solver - Xpress-Optimizer®

APOPT® - Artelys Knitro® - BFMPD - BFOPT - CELEX® - GloMIQO* - Gurobi® - IPOPT - LINDO® - LOQO - MINGS
- MOSEKT - SCIP* - Xpress-Optimizer” - Xpress-5LFP*

CPLEX* - DSDP - Gurobi* - LINDO* - LOQO - MOSEK® - SCIP* - SDPT 3 - SeDuldi - Xpress-Optimizer*
CSDP-DSDP - MOSEK - PENBMI - PENSDP - SCIP-SDP* - SDPA - SDPT3 - SeDuMi

ALGENCAN - AlphaECP* - ANTIGOMNE® - ACA® - APOPT® - Artelys Knitro® - BARCN® - Bonmin® - BPOPT -
CONCPT - Couenne® - DICOPT® - FilMINT* - FilterSQF - Galahad library - ipfilter - IPOFT - LANCELOT -
LINDO® - LOQO - LRAMBO - MIDACC® - MILANC® - MINLP BB® - MING S - Minotaur® - MISGIP* - NLPQLP -
MPSOL - CQNLP* - PATHNLP - PENNCN - SBB* - SCIP* - SNOPT® - SQPlab - WORHP - Xpress-SLP*

BARCN - Couenne® - LINDO - SCIP
Artelys Kalis - Choco - Comet - CPLEX CF Optimizer - Gecode - Google CP Salver - JaCoP - OscaR
CptaFlanner - LocalSaolver

List of optimization software - Comparison of optimization software
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Solving optimization problems

A simple optimization problem:

min |x, +6|+|x, — 4

X eR

st 3<x,<5 —-2<x,<£2
The YALMIP toolbox for Matlab (from ETH / Linkoping):
sdpvar x1 x2;

f = abs(x1 + 6) + abs(x2 - 4);

X =set(3 <=x1<=5)+ ...
set( -2 <= x2 <= 2);

solvesdp(X,f);
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Solving optimization problems l @
St o

A simple optimization problem:

min |x, +6|+|x, — 4

X eR

st 3<x,<5 —-2<x,<£2

The CVX toolbox for Matlab (from Stanford):

cvx_begin

variables x1 x?2

minimize(abs(x1 + 6) + abs(x2 - 4))
subject to

3<=x1<=5

2<=x2<=2

cvx _end




Linear Program (LP)

O The optimal solution of LP lies one of the corner points or facets

of the feasible region

max X, + X,

X1, %o

st. 0<x <1
0<x,<1

2X, + X, <2
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Linear Program (LP) ‘ @

1 The optimal solution of LP lies one of the corner points or facets

of the feasible region

¢
max X, + X, z
X1,X5 —
st. 0<x <1 . |
N *d (1, ¥3)
0<x,<1 8
\\ \'\ \\
2% + X, <2 SN BN N
\\\ \\\ \\\ ,‘Q‘?"' r; <1
. . . A A * b
Vector ¢= (—1—1)(change maximization ) A ‘ .
] \\ 05 \\ 1 \. T
to minimization) /”f'\ N \
0] E M N ’

Optimal solution: (Xl*, Xz*) =(0.5,1)
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Linear Program (LP)

of the feasible region

max X, + X,

st. 0<x <1
0<x,<1
X +% <3

O The optimal solution of LP lies one of the corner points or facets
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I Linear Program (LP) l @

1 The optimal solution of LP lies one of the corner points or facets

of the feasible region

max X, + X,

X{ 1 X |
st. 0<x <1 2
0<x,<1
X +% <3,

Optimal solution not unique:

(%", %) = A(0.5,1) + (1- 1)(1,0.5)
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‘ Optimizing over simplexes \ @
Sy 7

A simplex is defined as follows:

X ={xeR":) x =1x2>0,i=1....n}
=1

[ Consider the optimization problem:

n
mxanxj,Bj < min B,
=

st. xe X

0 Optimal X' lies in the corner point of simplex X. Similarly,

n
mS\xej,Bj < max. B,
=

st. xe X
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[ Epigraph problem form ‘ @

The epigraph form of the standard optimization problem is the problem
min t

X,t

st. f,(x)<t teR,xeR"
f.(x)<b, i={i...,m}

[ We can easily see that it is equivalent to the original problem:(x,t)is
optimal for the epigraph form if and only if Xis optimal for the
standard optimization problem and t= f (X) . Note that the
objective function of the epigraph form problem is a linear function
of the variables X,t.
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Example Linear Programs \ @
ey

Piecewise affine minimization

min [ max{c;x+d;}]

st. Ax<Db
is equivalent to an LP:
mitn t
st. cx+d <t i1={l....m}
AX<Db

[ trick was to add variables and write the problem in epigraph form.
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Becap - Mixed Strategies l @

In mixed strategies:

J the players select their actions randomly according to a previously
selected probability distribution

A mixed policy for P, is a set of numbers
Column player’s actions

Y ={(p V)i D Y=Ly, 20,i=1...m} § ZW 1z (LR 2,
i=1 13
§ Yu || ||| ||| Szl [||| 111l ||&1n
[ A mixed policy for P, is a set of numbers % v |11 i@l |1 &@bal ] 11411 { 1| asH
i =
z={(z,....2,)1 > 2;=1,2;,20, j=1,...n} %
)= ~ Ym  @m1 Qe Amn
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Definition: (Mixed saddle-point equilibrium):
A pair of policies defined through the probabilities (y,z2)eYxZ

is called a mixed saddle-point equilibrium it

V'AZ > y' Az vyeY (the maximizer)

y'AZ < yTAzZ VzeZ  (the minimizer)

and Y ' A Z is the is called the saddle point value.

This is also called a Nash Equilibrium: no player can do
better by unilaterally changing his strategy (includes both pure
and mixed strategies)
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Theorem (Mixed saddle—point VS. security levels)

A matrix game defined by A has a mixed Saddle—point
equilibrium if and only if

V_(A)=max miny'Az= min maxy'Az=V_(A)

yeY zel el yeY
In particular,

| (y*, Z*) is a mixed saddle-point equilibrium
av _ (A) =V_m (A) is the saddle point value
This condition holds for all matrices A

For any two player Zero-sum game there exists a saddle
point equiiibrium (Nash equilibrium)

You can check this condition by just checking V. _(A)=V _(A)
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To compute the mixed security policy for P, (the maximizer) we need
to solve

y eargmax miny' Az
er el

To compute the mixed security policy forP, (the minimizer) we need to
solve

Z eargminmax y' Az
el yeY
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A simplex is defined as follows:

X ={xeR":> x=1x2>0i=1...,n}

[ Consider the optimization problem:

n
mxanxj,Bj & min_ g,

JefL...n}

0 Optimal X' lies in the corner point of simplex X. Similarly,

n
maX > X.p. MaxXx
XQXfy = max b

jefL...n}
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Computing the security strategy for P, (the maximizer)

V., (A):=max miny'Az=max min > > z,y.a,

yeY zel yeY ze’l i1 1

Remembering that Zisa simplex, if we look at the inner minimization

m n m
- Z is a simplex . -

min ZZijiaij > min Zyiaij
ze’Z i1 ) je{l,....n} 1




To compute the mixed security policy for P, we need to solve

V_(A):= max mizn y'Az=max min{> ya,,...> Via.}
i=1 =1

yeY Ze yeY

= The resulting problem requires maximizing a convex piecewise
linear function which is equivalent to the following linear
program

V. (A):= max t
y,t
st.> ya, >t j=1..,n
=1
yeY,telR




Piecewise affine maximization

max [1pin {6y}

st. Ax<b

is equivalent to an LP:
MaXx {

X,t

st. cx+d >t 1={...,m}
Ax<b

[ trick was to add variables and write the problem in epigraph form.
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= Wherd =(1,... ,]_)T e R™ is the vector ones
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= Following similar arguments, we can show that P, can compute his

security strategy solving the following linear optimization problem

V_(A):= min t

Zt

st. Az <t
1'z=1
Z2>0
ZzeR"teR
* Where]=(1,...,1)" € R"is the vector ones
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= Yalmip code for solving the LP for P,

V_(A):= min t

Z,t

st. Az <t
1'z=1
2>0
ZzeR"teR




3 Yalmip code for solving the LP for P,

m = 5;n = 10;

A = rand(m,n);
z = sdpvar(n,1);
t = sdpvar(1,1);
obj = t;

constraints = [A*z <= ones(m, 1)*t, sum(z) == 1, z>= 0];
optimize(constraints,obj);

SecurityLevel = double(t)

SecurityPolicy = double(z)
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