C
.o e ¢
.
‘ ’ ‘ J .o
*e 0 oo o

Model Predictive Control
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Syllabus :

[ Introduction

Introduction to MPC, typical industrial structure, MPC algorithms
architecture

History of MPC

M Linear Model Predictive Control design
Steady-state optimization, dynamic optimization
Quick overview of numerical optimization problems

MPC for linear time-invariant discrete-time systems. Implementation
in code.

Overview of quadratic programming and the active set method.
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{About the course

[ Linear Model Predictive Control analysis

Asymptotic (exponential) stability analysis

Feasibility and Stability

Stability and Invariance of MPC

Practical Issues

[ Nonlinear systems

Linear parameter-varying, time-varying, and nonlinear MPC

Moving horizon estimators
(] Advanced Topics on MPC

Explicit MPC, Economic MPC, Hybrid MPC, Robust MPC,
Distributed MPC, Stochastic MPC, data-driven MPC
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l About the course

® [ectures:
® Monday, and Wednesday 15:30-17:00

e Office hours:
° Wednesday 11-13

® Grading
® Homework 30%
® Final exam 20%
® Project (10% bonus) 50%-60%
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There are many interesting books on MPC.

We will be using the following:

4 Borrelli, F., Bemporad, A. and Morari, M., Predictive control for linear and

hybrid systems. Cambridge University Press, 2017.
[ Camacho, E. F., & Alba, C. B. (2013). Model predictive control. Springer

[ Wang, L., 2009. Model predictive control system design and
implementation using MATLAB®. Springer )

d Huang, S., & Lee, T. H. (2013). Applied predictive control. Springer

[ Grine, L., & Pannek, J. (2017). Nonlinear model predictive control.
Springer.
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Model Predictive Control (MPC) | @

optimization

prediction model algorithm

model-based optimizer

process
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set-points

(1)

outputs
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T measurements

Use a dynamical model of the process to predict its future
evolution and choose the best control action
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Ymin = Yk = Vmax

k=0 - Uy
s.t. Xxky1 = F(Xk, Uk) prediction model } — manipulated inputs
Y = g(xk( Thk N
Y
Upin < Uk < Upax constraints

xo = x(£( state feedback

,,,,,,,,,,,,,,, I

numerlcal optimization problem / ik
e Ateachtimet: /

— get new measurements to update the estimate of the current state x(1(
— solve the optimization problem with respectto {uo, ..., un- {i
e — apply only the first optimal move u(?) = u', discard the remaining samples

t+N+1
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Classical design:  design C

Dominant issues addressed
e Disturbance rejection (d in y(
e Noise insensitivity (n —\{

e Model uncertainty

e Jusually in frequency domain(

MPC:
to choose u(/(

real-time, repeated optimization

min f (m, u) |

U

Dominant issues addressed

Control constraints (limits(

Process constraints (safety(

) usually intime domain(
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All physical systems have constraints:
e Physical constraints, e.g actuator limits

e Performance constraints, e.g overshoot

e Safety constraints, e.g temperature/pressure limits

Optimal operating points are often near constraints.
e Adhocconstraint management

e Set point sufficiently far fromconstraints

e Suboptimal plant operation

Predictive control:

e Constraints indudedinthe design
e Setpoint optimal

e Optimal plant operation

(assical control methods:
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output

constraint
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2 Main advantages:

O Systematic approach for handling constraints
QO High performance controller

3 Main challenges:
Q Implementation

MPC problem has to be solved in real-time, i.e. within the sampling interval of
the system, and with available hardware (storage, processor,...).

Q  Stability
Closed-loop stability, i.e. convergence, is not automatically guaranteed

3 Robustness
The closed-loop system is not necessarily robust against uncertainties or
disturbances

3  Feasibility
Optimization problem may become infeasible at some future time step, i.e.
there may not exist a plan satisfying all constraints

o y




e MPC islike playing chess!

Daﬂy -life examples of MPC \ @
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e Youuse MPC too whenyoudrive!
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Autonomous dNalNo Race Cars

Race car:

e 1:43scale, very light (50g) and fast
e Radio controlled

e 2.4GHz transmitter allows to run up to
40 cars
Control Problem:

e Nonlinear model in 4D (position,
orientation(

e Constraints: acceleration, steering angle,
race

track, other cars...

e Task: Optimal path planning and path
following

e Challenges: State estimation, effects

that are difficult to model/measure,
e.g. slip, small sampling times
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History of MPC @
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The Smith Predictor (perhaps the earliest predictive controller, 1959 by O.J.

Smith) Process
Controller
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History of MPC
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The MPC concept dates back to the 60’s
’ ; . . . . .
iscrete Dynamic Optimization
‘Applied to On-Line Optimal Control
¥
i MARSHALL D. RAFAL and WILLIAM F. STEVENS
Tom XXIV «ABTOM ATHRA H TEAEMEX AHHEA» N7 USE OF LINEAR PROGRAMMING METHODS
: 1963 fFOR SYNTHESIZING SAMPLED-DATA AUTOMATIC SYSTEMS
A. 1. Propoi
(Moscow)
VIR 62-50 Translated from Avtomatika i Telemekhanika, Vol. 24, No. 7,
pp. 912-920, July, 1963
IIPUMEHEHHME METOJIOB JIMHEIHOTO ITPOI'PAMMHIPOBAHIA Original article submitted September 24, 1962
IJIA CHHTE3A HMIIYJIBCHBIX ABTOMATHYECKHNX
CHCTEM
A. 1. IPOLION

e MPC used in the process industries since the 80’s

Today APC (advanced process control) =MPC
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History of MPC
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O 1970s: Cutler suggested MPC in his Ph D proposal at the University of Houston
in 1969 and introduced it later at Shell under the name Dynamic Matrix Control.
C. R. Cutler, B. L. Ramaker, 1979 “Dynamic matrix control —a computer
control algorithm”. AICHE National Meeting, Houston, TX.

successful in the petro-chemical industry

linear step response model for the plant

quadratic performance objective over a finite prediction horizon

future plant output behavior specified by trying to follow the set-point as
closely as possible

input and output constraints included in the formulation

optimal inputs computed as the solution to a least—squares problem
adhoc input and output constraints. Additional equation added online to
account (or constraints. Hence a dynamic matrix in the least squares
problem.

a C. Cutler, A. Morshedi, J. Haydel, 1983. “An industrial perspective on
advanced control”. AICHE Annual Meeting, Washington, DC.

Standard QP problem formulated in order to systematically account for
constraints.
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History of MPC @
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O Mid 1990s: extensive theoretical effort devoted to provide conditions for guaranteeing
feasibility and closed-loop stability

(J 2000s: development of tractable robust MPC approaches; nonlinear and hybrid MPC;
MPC for very fast systems

(J 2010s: stochastic MPC; distributed large-scale MPC; economic MPC; data driven
MPC




e Industrial survey of MPC applications conducted in mid 1999

S i 4

Area Aspen Technology Honeywell Hi- Adersa® Invensys SGS¢ Total
Spec
Refining 1200 480 280 25 1985
Petrochemicals 450 80 — 20 550
Chemicals 100 20 3 21 144
Pulp and paper 18 50 — — 68
Air & Gas — 10 — — 10
Utility — 10 — 14
Mining/Metallurgy 8 6 7 37
Food Processing — — 41 51
Polymer 17 — — — 17
Furnaces — — 42 3 45
Aerospace/Defense — — 13 — 13
Automotive — — 7 — 7
Unclassified 40 40 1045 26 450 1601
Total 1833 696 1438 125 450 4542
First App. DMC:1985 PCT:1984 IDCOM:1973
IDCOM-M:1987 RMPCT:1991 HIECON:1986 1984 1985
OPC:1987
Largest App. 283 > 603 85 x 225 _ 12 % 31 —

N

Estimates based on vendor survey
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Petrochemical
Chemicals

Petroleum refining

Mineralsprocessing
Oil & Gas
Power & utilities
Pulp & paper
Industrial gases
Coal products Supplier i m Standard
Water & wastewater I Users e Frequently
Other Split-range control | m Rarely
%;0 %éo %40 %60 %80  100% Linear programming (LP) | m Never
Nonlinear control algorithms ormodels | m Don't know
P Dead-time compensation |
participants of APC |
. Statistical process control | ————————f———f—
su rvey by in d u St ry Neural networks based control |
(WO I"| dWi dE( Expert system based control 7—-
Fuzzy logic control |
Internal model control (IMC) 7-
Adaptive /selftuning control _g
Directsynthesis (DS( 7F

%0 %20 %40 %60 %80
%100

K Industrial use of APC methods: survey results /




Rank and Technology

PID control

Model predictive control

System identification
Process data analytics
Soft sensing

Fault detection and
identification

Decentralized and/or
coordinated control

Intelligent control
Discrete-event systems
Nonlinear control
Adaptive control

Robust control

Hybrid dynamical systems

High-Impact Ratings

100%

78%

61%
51%
52%
50%

48%

35%
23%
22%
17%
13%
13%

Low- or No-Impacl Ratings
0%
9%
9%
17%
22%

18%

30%

30%
32%
35%
43%
43%
43%

u}u’f el U-"i:zh

(Samad, IEEE CS Magazine, 2017
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Current Impact Future Impact

Control Technology % High Low/No High Low/No
PID control 91% 0% 78% 6%
System Identification 65% 5% 72% 5%
Estimation & filtering 64% 11% 63% 3%

[ Model-predictive control| 62% 11% 85% 2%
Process data analytics 51% 15% 70% 8%
Fault detection & 48% 17% 8% 8%
identification
Decentralized and/or 29% 33% 54% 11%
coordinated control
Robust control 26% 35% 42%  23%
Intelligent control 24% 38% 59% 11%
Nonlinear control 21% 44% 42% 15%
Discrete-event systems 24% 45% 39% 27%
Adaptive control 18% 38% 4% 17%
Repetitive control 12% 74% 17% 51%
Other advanced 11% 64% 25%  39%
control technology
Hybrid dynamical 11% 68% 33% 33%
systems
Game theory 5% 76% 17%  52%

y,
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)Samad, IFAC Newsletter, April (2019
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PRESS RELEASE

Pratt & Whitney's F135 Advanced Multi-Variable
Control Team Receives UTC's Prestigious George
Mead Award for Outstanding Engineering
Accomplishment

O

EAST HARTFORD, CONN., THUHSDA@ 27,2010 )

Pratt & Whitney engineers Louis Celiberti, Timothy Crowley, James Fuller and Cary Powell
won the George Mead Award — United Technologies Corp.'s highest award for outstanding
engineering achievement — for their pioneering work in developing the world's first advanced
multi-variable control (AMVC) design for the only engine that powers the F-35 Lightning Il
flight test program. Pratt & Whitney is a United Technologies Corp. (NYSE:UTX) company.

The AMVC, which uses a proprietary model predictive control methodology, is the most
technically advanced propulsion system control ever produced by the aerospace industry,
demonstrating the highest pilot rating for flight performance and providing independent
control of vertical thrust and pitch from five sources. This innovative and industry-leading
advanced design is protected with five broad patents for Pratt & Whitney and UTC, and is the
new standard for propulsion system control for Pratt & Whitney military and commercial
engines.

ttp://www.pw.utc.com/Press/Story/20100527-0100/2010
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Pratt & Whitney

A United Technologies Company
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)Patrinos, Trimboli, Bemporad,

(2011

transmission grid
77

2 5
hydro—

storage

farm

Dispatch power in smart distribution grids, trade energy on energy markets

Challenges: account for dynamics, network topology, physical constraints, and

@stochasticity (of renewable energy, demand, electricity prices(
A
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MPC research is driven by applications @

St 4
Process control — linear MPC (some nonlinear too( 2000-1970
Automotive control — explicit, hybrid MPC 2010-2001
Aerospace systems and UAVs — linear time-varyingMPC >2005

Information and Communication Technologies (ICT)

(wireless nets, cloud) — distributed/decentralized MPC >2005
Energy, finance, automotive, water — stochasticMPC >2010
Industrial production — embedded optimization solvers for MPC 2010<
Machine learning — data-driven MPC today

~
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Benefits of MPC @
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e Long history (decades) of success of MPC in industry

e MPC is a universal control methodology:

— to coordinate multiple inputs/outputs, arbitrary models (linear, nonlinear...
— to optimize performance under constraints
— intuitive to design, easy to calibrate and reconfigure =short development time

e MPC isamature technology also in fast-sampling applications (e.g. automotive(

— modern ECUs can solve MPC problems in real-time
— advanced MPC software tools are available for design/calibration/deployment
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