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Introduction @

Up to this point: Discrete-time linear systems with linear constraints.

We now consider MPC for systems with
1. Continuous dynamics: described by one or more difference (or
differential) equations; states are continuous-valued.
2. Discrete events: state variables assume discrete values, e.g.
O binary digits {0, 1},
aN,Z,qQ, . ..
O finite set of symbols

Hybrid systems: Dynamical systems whose state evolution depends on an

interaction between continuous dynamics and discrete events
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[Hybrid dynamical systems } @
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e Variables are binary-valued e Variables are real-valued
xe €10, 1}, ue €10, 1}me Xec €ER", uc. e Rme

e Dynamics =finite state machine » Difference/differential equations

@- Logic constraints e Linear inequality constraints
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[Examples of Hybrid Systems J @

- continuous dynamical
e Vehicle | Y
?ﬂvariables (speed, torque, ...)

continuous commands (brake

& gas pedal)

-+

discrete command
(RINI]'IZI3I415)
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[Examples of Hybrid Systems

e DC/DC Converter Te 0,
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[ Continuous dynamics: states v, i}, v, i_, vy, i

dDiscrete events: =0, S =1
Mode 1 (S=1)
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Mode 2 (S=0)
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Key requirements for hybrid models @

S 1 215, a2 2
MO 175 Wy

» Descriptive enough to capture the behavior of the system

— continuous dynamics (physical systems)
— logic components (switches, automata)
— interconnection between logic and dynamics

e Simple enough for solving analysis and synthesis problems

x = Ax + Bu g o Cox = f (x, u,t)
y = Cx + Du linear hybrid systems y = g u 1)

“Perfection is achieved not when there is nothing more to add,
but when there is nothing left to take away.”

@ A.deSaint-Exupéry
\ (1900-1944) j
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{Piecewise affine systems

x(k+1) = Aijgx(k)+ Bixu(k) + fik
yk) = Cyprx(k)+ Dixu(k) + gix

e PWA systems can approximate nonlinear dynamics arbitrarily well
(even discontinuousones)

x(k+1)]
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Piecewise Attine (PWA) Systems @

Examples :

(Jlinearization of a non-linear system at different operating point =

useful as an approximation tool
d closed—loop MPC system for linear constrained systems

 When the mode i is an exogenous variable, the partition disappears

and we refer to the system as a Switched Affine System (SAS)

Definition: Well-Posedness

Let P be a PWA system and let X' = U_,.X; C BR""™ be the polyhedral partition
associated with it. System P is called well-posed if for all pairs (z(t), u(f)) € X
there exists only one index i(t) satisfying the membership condition.

{: p
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[ Piecewise Aftine (PWA) Systems J @

¢ 3 v b
¥ W17, 2K
Ol W0

Binary States, Inputs, and Outputs
Remark: In the previous example, the PWA system has only

continuous states and inputs.

We will formulate PWA systems including binary state and inputs by

treating O—1 binary variables as:
[ Numbers, over which arithmetic operations are defined,

(dBoolean variables, over which Boolean functions are defined

We will use the notation z =[] € R™ x {0,1}™, n £ n. + ny;
y e RP x {0,1}7, p= po+ pe; u e B™ x {0.1}™, m L m. + my.

o

~
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Piecewise Aftine (PWA) Systems @

- R
2t 7,2
J!‘C«_’ /..f‘{J‘ iy :&‘s

Boolean Algebra: Basic Definitions and Notation

m Boolean variable: A variable 4 is a Boolean variable if 4 € {0, 1}, where
“4 = ()" means “false”, "4 = 1" means “true”.

m A Boolean expression is obtained by combining Boolean variables through
the logic operators — (not), v (or), A (and), + (implied by), — (implies),
and +» (iff).

m A Boolean function f: {0.1}" !+ {0, 1} is used to define a Boolean
variable 4, as a logic function of other variables 44, .... Op—1:

o




Piecewise Attine (PWA) Systems

Example:

Te(t+1) = 2z(t)+ u(t) — 3uelt)
ze(t+1) = zp(t) Auglt)

can be represented in the PWA form

2r (1) + uc(t) | .
l Uﬂ W1 i z<luc<l
lhﬂ“)+u:{f}—3' if 7 <gu>j5+te
Te(f+ 1) iy ! _
.I.'f{t+].:| -

l 2z, (t) + u(t) |

0 if m>34eu<

I et

l 2x.(t) + ue(t) =3 |

) if Z>3+eu>35+e

by associating xy = () with zz < % and zr = 1 with = > % + e forany 0 <e < %
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Discrete Hybrid Automaton (DHA) @

discrete
' Event Generator | (k)
de =1| & |Hxe + Kue < W
5@(’6) [ € ] [ C c‘\\\\]
e =1 ML
Switched Affine System
ini i uc(k) | | ze(k+1) =
Finite StateMachine c . Aize(k) + Biuc(k) + fi|—— .
ZEg(k: + 1) == discrete ik iEc(k)
(k) fB(xo(k), up(k),de(k)) =77 zi;:iter """" » i =1i(k)
O— 0O zy(k)
d .
., Mode Selector - | mees ik
’U«g(k) [am .
Se(k . —
) > 1 — fl\/l(WaUe,(Se) _
continuous
x¢ €10, 1} = binarystate Xc ERMe = real-valuedstate

@ ue €{0, 1}™ = binaryinput uc € Rme = real-valuedinput
\ Je€{0, 1}" = eventvariable i €{l,...,s} = currentmode j
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Switched affine system

xce(k+ 1)

discrete
Event ze(k)
Generator|™
de(k) .
=1 ) Switched
N =0 Affine
System
(k) [ Ik
Finite State ok
Machine time or e ze(k)
"""""""" event [ro-cmmmmmmmemeseoe
ug(k) | | ;K !: _ |counter B
O ry(k)
mode |i(k)
Mode Selector
ug(k) B
5 (k) E:
)= .
continuous

¢ The affine dynamics depend on the current mode i(k):

= AijyXc(k) + Biyuc(k) + fick)

e

c ERMe
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Event generator

©

i Event ze(k)
dlscret? (A) Generataor -
ek .
fe=1_5 — Switched
Affine
5 =0
System
ol
Finite State O
Machine time or 1 _2 po ve(k)
/ ( ) ; i event [roommemommeoeees
ug(k) counter| [ s P
O zy(k)
mode [i(k)
Mode Selector
'I!'f(f-?) b
be (k) .Ib
1=
continuous

[EE;{R] — ]] > [Hi-l'c[k]l 4 I,.l'i L!..n_{ﬁ_‘:l- < Hrff

e Example: [6.(k) = 1] & [z.(k) = 0]

» Event variables are generated by linear threshold conditions over continuous
states, continuous inputs, and time:

Te € R,
0e € {0,1}"

i, € BMe

s Q:_-’I Ve Jf"(;"js‘% 2]
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Finite state machine

discrete

de(k)

ug(k)

Finite State
Machine

5%

Event
Generator

ze(k)

_______________

Switched
Affine

LT by ze(k)

eli(k)

continuous

e Thebinary state of the finite state machine evolves according to a Boolean
state update function /5 : {0, 1}retmetne — {(), 1}7e:

@. Example: x/(k + 1) = —de(k) V (x¢(k) Aue(k))

xe €40, 137, ue €10, 1™

Oe E{O; l}ne
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Transtormation of a DHA into linear

(in)equalities B
X; VX =TRUE == L 6 40,>1,  61,00€{0,1}
Any logic statement )
f(X) =TRUE 1<) 6+ > (1-6)
L ZEP]_ leNl
m {
N (ViEPin VieN; ﬁXi) (CNF—"S 1< ) &+ > (1-96)
j=1 d ;f \ i€Pp, i€ENm,
Nj,Pjg{l,...,n} ’
. . / f Hiz (k) —WE< ML =3 (&)
[5é(k) — 1] — [Hzxc(k)g WZ] *; { H! ‘I\j‘,![“; Ve~ i‘”:,g: (1) o
(e M2)(1—6) +2 < are+brut fr
_ /_ T T
F =1 THEN F=arz+lut+fi | (my “Wg)(1-6) —2 < —arz—bu—f1
ELSE z = az9/+-byu+ fa| “®¢ (mo —Ma)d+2 < apx+ bou+ fo
‘ 5 ‘ (my — M3)o~~2 < —apx —bou — fo
- . |Switched |
~ |Affine System
Finite State |Mode Selector | Event

Generator

1 B
.o
@; RN
¥ \I
r JF P
i

Machine
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ixed Logical Dynamical (MLD)

systems ;

b v
r'dw"/fﬂ?,r‘

v

&

Goal: Describe hybrid system in form compatible with optimization software:

m continuous and boolean variables

m linear equalities and inequalities

Idea: associate to each Boolean variable p; a binary integer variable 4;:
[t — {f."l = 1} = {IE, = E.]}

and embed them into a set of constraints as linear integer inequalities.

Two main steps:

E Translation of Logic Rules into Linear Integer Inequalities

B Translation continuous and logical components into Linear Mixed-Integer
Relations

Final result: a compact model with linear equalities and inequalities involving real

e and binary variables i
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ixed Logical Dynamical (MLD) @

systems

Boolean formulas as Linear Integer Inequalities

il R
‘:Jis

T
Pt 4dt)

Goal

set of binary values {8;,4d2. ..., dn } satisfies the Boolean formula F in P
F(pi.p2e....pn) “TRUE" = A6 < B, de€{0,1}"

where: {4§; =1} < p; = TRUE.

Given a Boolean formula F(pi, pa. ..., pn ) define a polyhedral set P such that a

~
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ixed Logical Dynamical (MLD)

systems

Analytic Approach

Transform Fpy.ps. ...,

F(plz-p;’*'"rpﬂ]: ,”\ lVPi]

B Translation of a CNF into algebraic inequalities:

relation Boolean linear constraints
AND d1 A da &y > 1,80 =1 also dy +da =2
OR a1 WV o2 M +oa =1
NOT = T—3) >1lasod; =0
XOR M & da M +dr=1
IMPLY 51 — 5-.5 -I'.'l'-|_ —nl'.'ig < ]
IFF 51 Hag -I'.'l'-|_ —II'.'ig = ()
ASSIGNMENT h+(l—4d3)>1
dy =d; Ada dg =+ O A da ﬂ'_:g'i'{].—-:i:_i}z‘].
1=d)+(1—da)+dz>1

py) into a Conjuctive Normal Form (CNF):
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Mixed Logical Dynamical (MLD) @

o

S

* By converting logic relations into mixed-integer linear inequalities
a DHA can be rewritten as the Mixed Logical Dynamical (MLD) system

r{k+ 1) Ax(k) 4+ Biulk) + B20(k) + Baz{k)+ Bs
y(k) Cax(k) + Diulk) + Dab(k) + Dsz(k) + Ds
Eso(k) 4+ Eszz(k) €< Eaxz(k) + Eyu(k)+ Es

r € R x {0,1}™, u € R™ x {0,1}™
y € RP x {0,1}*, 4 € {0,1}™, z € R™

» The translation from DHA to MLD can be automatized, see e.g. the language
HYSDEL (HYbrid Systems DEscription Language)

¢ MLD models allow solving MPC, verification, state estimation, and fault
detection problems via mixed-integer programming

~
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MLD Hybrid Model. Well-Posedness @

~ R
(SR 17, )~¢
/V_*'/.."?‘g o€l

m Well-Posedness:
for a given r =[] = 1,4, and y; uniquely determined

m Complete Well-Posedness:
well-posedness 4 uniguely determined 4; and z, ¥ |3 ]

m Well-posedness is sufficient for the computation of the state and output
prediction

m Complete well-posedness allows transformation into equivalent hybrid models
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[ HYbrid System Description Language J @

¢ ol sy 0
Yy W 27

HYSDEL
] based on DHA

Jenables description of discrete-time hybrid systems in a
compact way:

(Jautomata and propositional logic

Jcontinuous dynamics
JA/D and D/A conversion

[ definition of constraints
automatically generates MLD models for MATLAB
O freely available from:
http://control.ee.ethz.ch/~hybrid/hysdel/

L
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