کنترل پیش بین Model Predictive Control

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Hybrid MPC

- □ Modeling of Hybrid Systems
 - □Introduction
 - Examples of Hybrid Systems
 - □Piecewise Affine (PWA) Systems
 - Mixed Logical Dynamical (MLD) Hybrid Model
- Optimal Control of Hybrid Systems
- □ Model Predictive Control of Hybrid Systems
- □ MPC of Hybrid Systems Examples

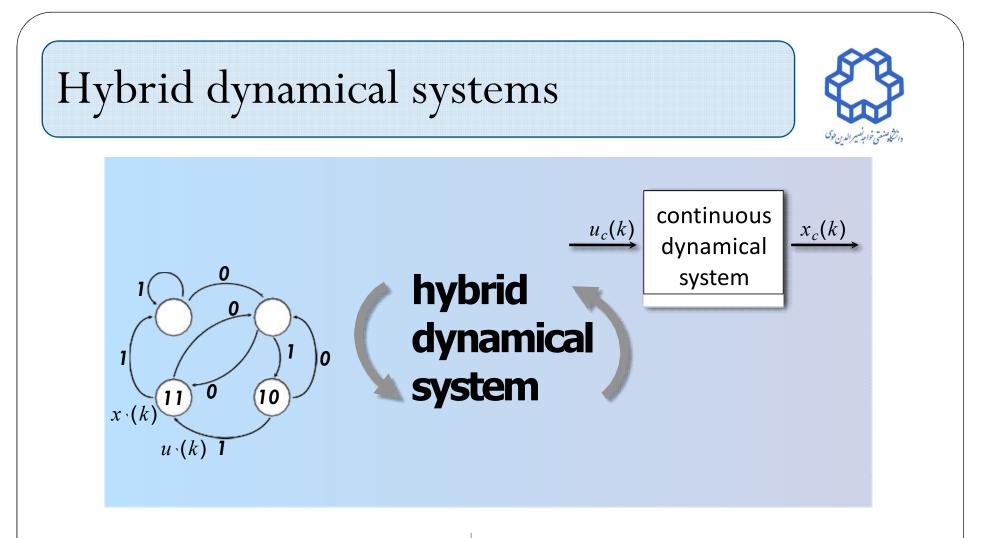
Introduction

Up to this point: Discrete-time linear systems with linear constraints.

We now consider MPC for systems with

- Continuous dynamics: described by one or more difference (or differential) equations; states are continuous-valued.
- 2. Discrete events: state variables assume discrete values, e.g.
- \Box binary digits {0, 1},
- \Box N, Z, Q, . . .
- □ finite set of symbols

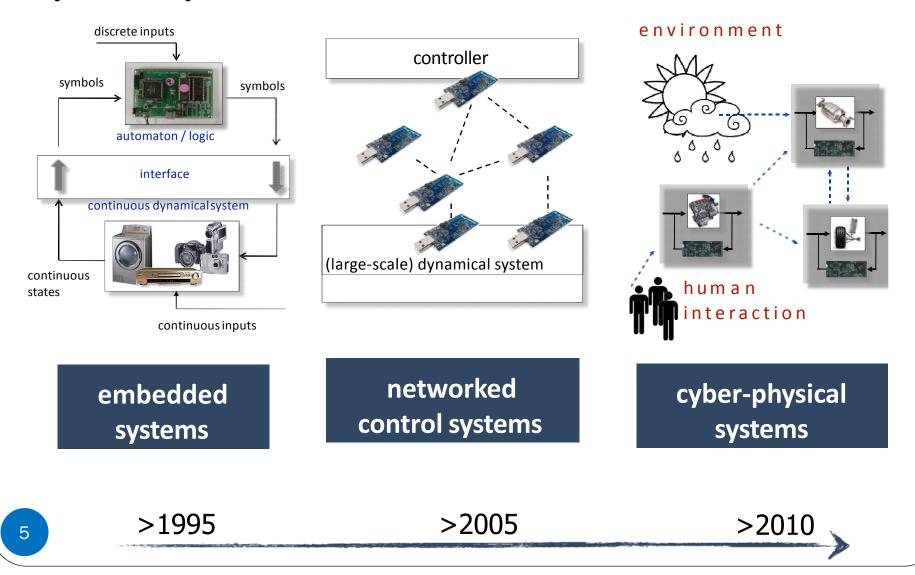
Hybrid systems: Dynamical systems whose state evolution depends on an interaction between continuous dynamics and discrete events



- Variables are binary-valued $x_{\ell} \in \{0, 1\}^{n_{\ell}}, u_{\ell} \in \{0, 1\}^{m_{\ell}}$
- Dynamics = finite state machine
- Logic constraints

- Variables are **real-valued** $x_c \in \mathbb{R}^{n_c}, u_c \in \mathbb{R}^{m_c}$
- Difference/differential equations
- Linear inequality constraints

Technological push for studying hybrid systems



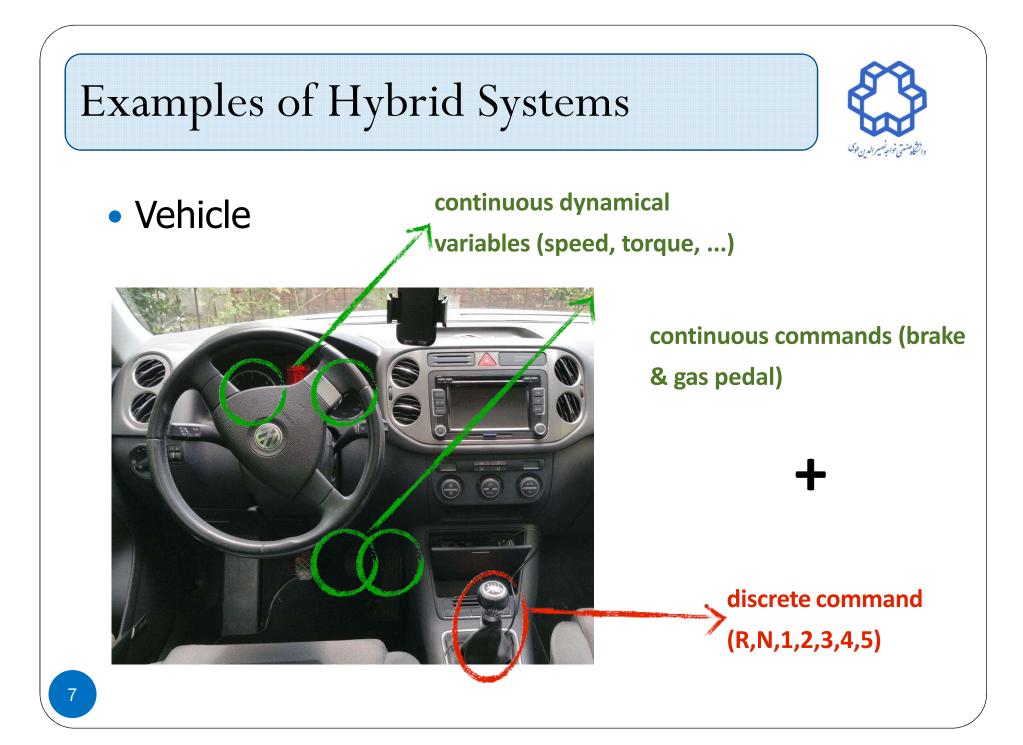
Hybrid MPC

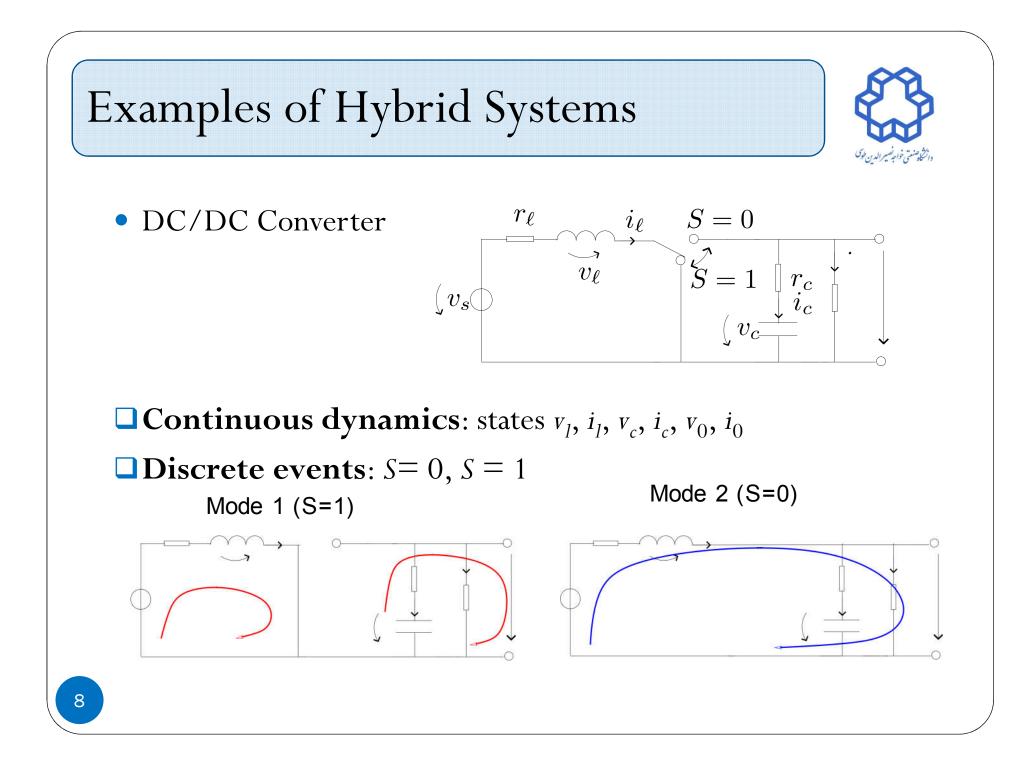
الشامنة بنا ونسرالد بروى

□ Modeling of Hybrid Systems

□Introduction

- Examples of Hybrid Systems
- □Piecewise Affine (PWA) Systems
- Mixed Logical Dynamical (MLD) Hybrid Model
- Optimal Control of Hybrid Systems
- □ Model Predictive Control of Hybrid Systems
- □ MPC of Hybrid Systems Examples





Hybrid MPC

□ Modeling of Hybrid Systems

□Introduction

Examples of Hybrid Systems

□Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

Optimal Control of Hybrid Systems

□ Model Predictive Control of Hybrid Systems

□ MPC of Hybrid Systems Examples

Key requirements for hybrid models

- **Descriptive** enough to capture the behavior of the system
 - **continuous** dynamics (physical systems)
 - logic components (switches, automata)
 - interconnection between logic and dynamics
- **Simple** enough for solving analysis and synthesis problems

$$x' = Ax + Bu$$

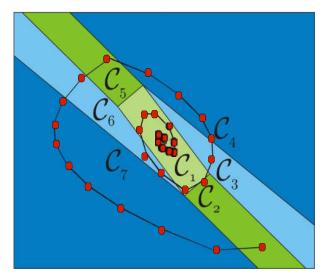
 $y = Cx + Du$
linear hybrid systems
 $x' = f(x, u, t)$
 $y = g(x, u, t)$

"Perfection is achieved not when there is nothing more to add, but when there is nothing left to take away."

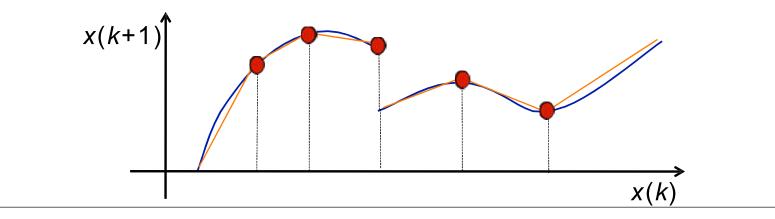
(1900–1944)

$$\begin{aligned} x(k+1) &= A_{i(k)}x(k) + B_{i(k)}u(k) + f_{i(k)} \\ y(k) &= C_{i(k)}x(k) + D_{i(k)}u(k) + g_{i(k)} \end{aligned}$$

$$i(k)$$
 s.t. $H_{i(k)}x(k) + J_{i(k)}u(k) \le K_{i(k)}$



• PWA systems can approximate nonlinear dynamics arbitrarily well (even discontinuous ones)



Piecewise Affine (PWA) Systems

Examples:

- □ linearization of a non-linear system at different operating point ⇒ useful as an approximation tool
- □ closed-loop MPC system for linear constrained systems
- □ When the mode i is an exogenous variable, the partition disappears and we refer to the system as a Switched Affine System (SAS)

Definition: Well-Posedness

Let P be a PWA system and let $\mathcal{X} = \bigcup_{i=1}^{s} \mathcal{X}_i \subseteq \mathbb{R}^{n+m}$ be the polyhedral partition associated with it. System P is called **well-posed** if for all pairs $(x(t), u(t)) \in \mathcal{X}$ there exists only one index i(t) satisfying the membership condition.

Piecewise Affine (PWA) Systems

Binary States, Inputs, and Outputs

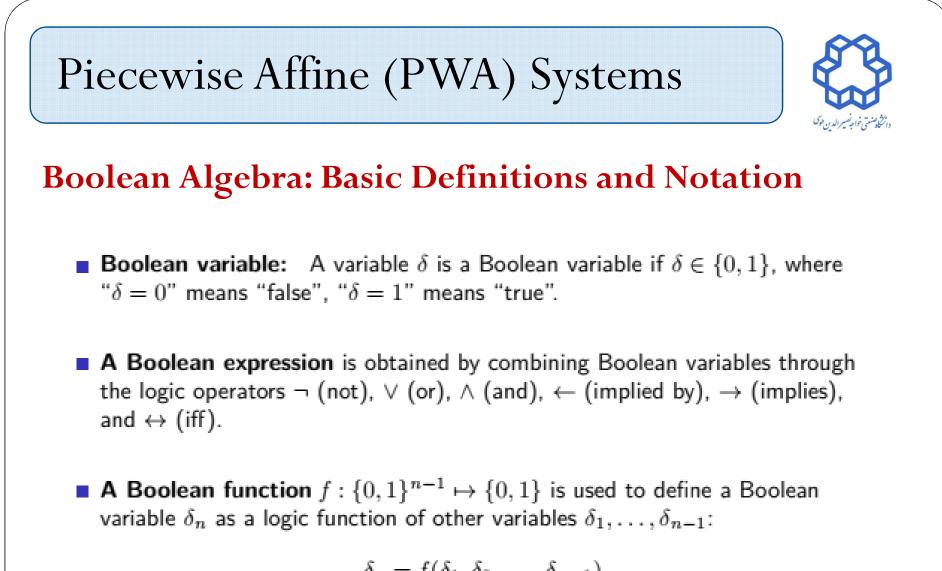
Remark: In the previous example, the PWA system has only continuous states and inputs.

We will formulate PWA systems including binary state and inputs by treating 0–1 binary variables as:

□ Numbers, over which arithmetic operations are defined,

□ Boolean variables, over which Boolean functions are defined

We will use the notation $x = \begin{bmatrix} x_c \\ x_\ell \end{bmatrix} \in \mathbb{R}^{n_c} \times \{0,1\}^{n_\ell}$, $n \triangleq n_c + n_\ell$; $y \in \mathbb{R}^{p_c} \times \{0,1\}^{p_\ell}$, $p \triangleq p_c + p_\ell$; $u \in \mathbb{R}^{m_c} \times \{0,1\}^{m_\ell}$, $m \triangleq m_c + m_\ell$.



$$\delta_n = f(\delta_1, \delta_2, \dots, \delta_{n-1}).$$

Piecewise Affine (PWA) Systems

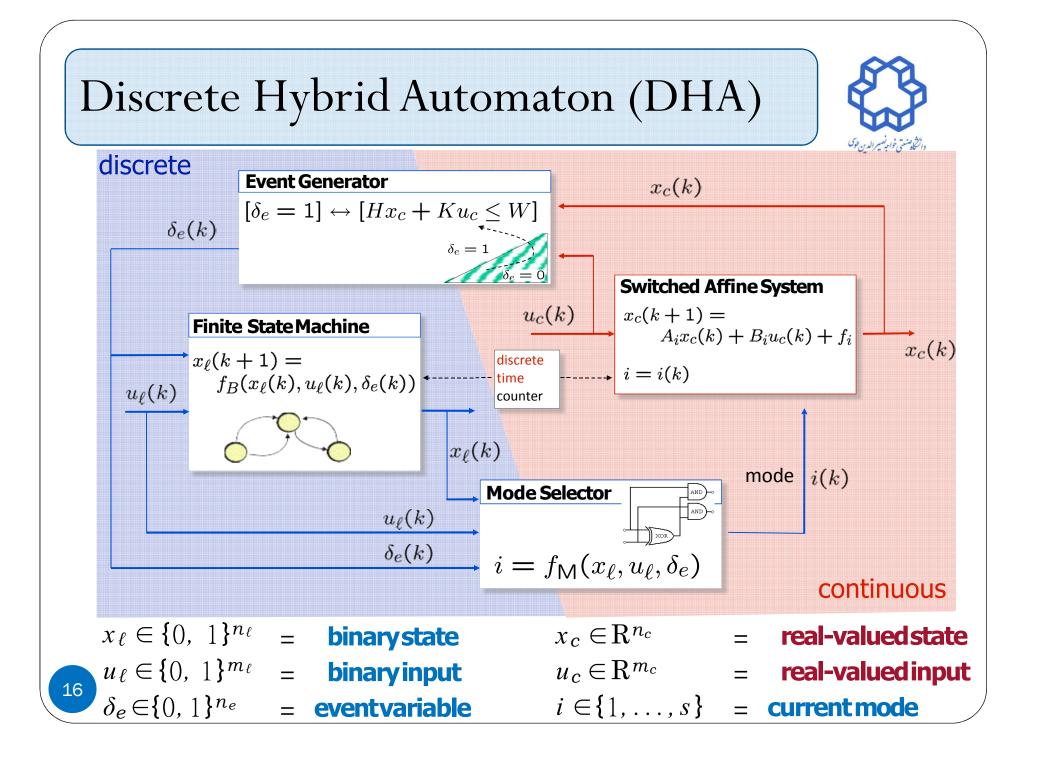
$$x_c(t + 1) = 2x_c(t) + u_c(t) - 3u_\ell(t)$$

 $x_\ell(t + 1) = x_\ell(t) \wedge u_\ell(t)$

can be represented in the PWA form

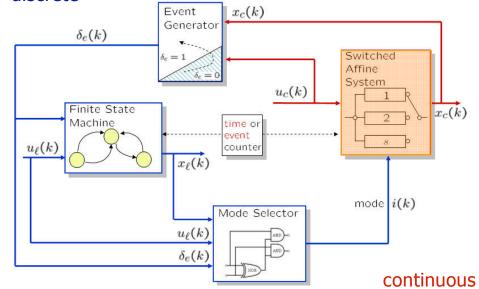
$$\begin{bmatrix} x_c(t+1) \\ x_\ell(t+1) \end{bmatrix} = \begin{cases} \begin{bmatrix} 2x_c(t) + u_c(t) \\ 0 \end{bmatrix} & \text{if } x_\ell \le \frac{1}{2}, u_\ell \le \frac{1}{2} \\ \begin{bmatrix} 2x_c(t) + u_c(t) - 3 \\ 0 \end{bmatrix} & \text{if } x_\ell \le \frac{1}{2}, u_\ell \ge \frac{1}{2} + \epsilon \\ \begin{bmatrix} 2x_c(t) + u_c(t) \\ 0 \end{bmatrix} & \text{if } x_\ell \ge \frac{1}{2} + \epsilon, u_\ell \le \frac{1}{2} \\ \begin{bmatrix} 2x_c(t) + u_c(t) - 3 \\ 1 \end{bmatrix} & \text{if } x_\ell \ge \frac{1}{2} + \epsilon, u_\ell \ge \frac{1}{2} + \epsilon. \end{cases}$$

by associating $x_{\ell} = 0$ with $x_{\ell} \leq \frac{1}{2}$ and $x_{\ell} = 1$ with $x_{\ell} \geq \frac{1}{2} + \epsilon$ for any $0 < \epsilon \leq \frac{1}{2}$.



Switched affine system

discrete

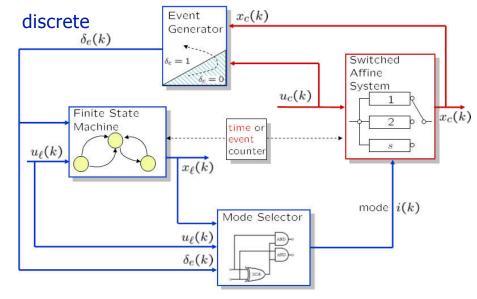


• The **affine dynamics** depend on the current mode *i*(*k*):

$$x_{c}(k+1) = A_{i(k)}x_{c}(k) + B_{i(k)}u_{c}(k) + f_{i(k)}$$

 $x_c \in \mathbb{R}^{n_c}$, $u_c \in \mathbb{R}^{m_c}$

Event generator



continuous

 Event variables are generated by linear threshold conditions over continuous states, continuous inputs, and time:

$$[\delta_e^i(k) = 1] \leftrightarrow [H^i x_c(k) + K^i u_c(k) \le W^i]$$

$$x_c \in \mathbb{R}^{n_c}, \quad u_c \in \mathbb{R}^{m_c}$$

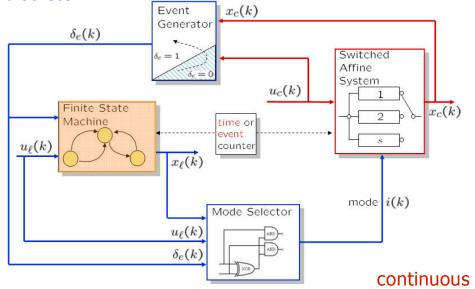
 $\delta_e \in \{0, 1\}^{n_e}$

• Example: $[\delta_e(k) = 1] \leftrightarrow [x_c(k) \ge 0]$

Finite state machine

discrete

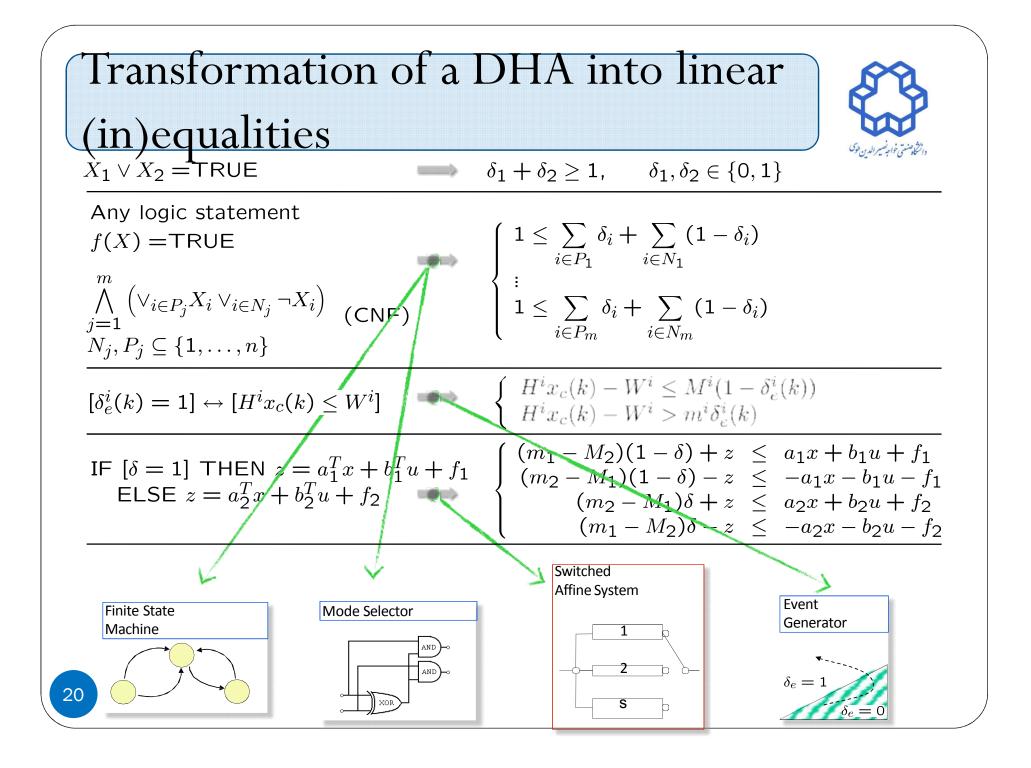
19



• The binary state of the **finite state machine** evolves according to a Boolean state update function $f_B : \{0, 1\}^{n_{\ell}+m_{\ell}+n_e} \rightarrow \{0, 1\}^{n_{\ell}}$:

$$x_{\ell}(k+1) = f_B(x_{\ell}(k), u_{\ell}(k), \delta_e(k)) \qquad \qquad x_{\ell} \in \{0, 1\}^{n_{\ell}}, \quad u_{\ell} \in \{0, 1\}^{m_{\ell}} \\ \delta_e \in \{0, 1\}^{n_e}$$

• Example:
$$x_{\ell}(k+1) = \neg \delta_{e}(k) \lor (x_{\ell}(k) \land u_{\ell}(k))$$



Hybrid MPC

□ Modeling of Hybrid Systems

- □ Introduction
- Examples of Hybrid Systems
- □Piecewise Affine (PWA) Systems
- Mixed Logical Dynamical (MLD) Hybrid Model
- Optimal Control of Hybrid Systems
- □ Model Predictive Control of Hybrid Systems
- □ MPC of Hybrid Systems Examples

Mixed Logical Dynamical (MLD)

systems

Goal: Describe hybrid system in form compatible with optimization software:

- continuous and boolean variables
- linear equalities and inequalities

Idea: associate to each Boolean variable p_i a binary integer variable δ_i :

$$p_i \Leftrightarrow \{\delta_i = 1\}, \quad \neg p_i \Leftrightarrow \{\delta_i = 0\}$$

and embed them into a set of constraints as linear integer inequalities.

Two main steps:

- Translation of Logic Rules into Linear Integer Inequalities
- Translation continuous and logical components into Linear Mixed-Integer Relations

Final result: a compact model with linear equalities and inequalities involving real and binary variables

22

Mixed Logical Dynamical (MLD)

systems

Boolean formulas as Linear Integer Inequalities

Goal

Given a Boolean formula $F(p_1, p_2, ..., p_n)$ define a polyhedral set P such that a set of binary values $\{\delta_1, \delta_2, ..., \delta_n\}$ satisfies the Boolean formula F in P

```
F(p_1, p_2, \dots, p_n) "TRUE" \Leftrightarrow A\delta \leq B, \quad \delta \in \{0, 1\}^n
```

where: $\{\delta_i = 1\} \Leftrightarrow p_i = \mathsf{TRUE}.$

Mixed Logical Dynamical (MLD)

systems

Analytic Approach

Transform $F(p_1, p_2, ..., p_n)$ into a **Conjuctive Normal Form (CNF)**:

$$F(p_1, p_2, \ldots, p_n) = \bigwedge_j \left[\bigvee_i p_i\right]$$

Translation of a CNF into algebraic inequalities:

relation	Boolean	linear constraints
AND	$\delta_1 \wedge \delta_2$	$\delta_1 \ge 1$, $\delta_2 \ge 1$ also $\delta_1 + \delta_2 \ge 2$
OR	$\delta_1 \vee \delta_2$	$\delta_1 + \delta_2 \ge 1$
NOT	$\neg \delta_1$	$(1 - \delta_1) \ge 1$ also $\delta_1 = 0$
XOR	$\delta_1 \oplus \delta_2$	$\delta_1 + \delta_2 = 1$
IMPLY	$\delta_1 \rightarrow \delta_2$	$\delta_1 - \delta_2 \le 0$
IFF	$\delta_1 \leftrightarrow \delta_2$	$\delta_1 - \delta_2 = 0$
ASSIGNMENT		$\delta_1 + (1 - \delta_3) \ge 1$
$\delta_3 = \delta_1 \wedge \delta_2$	$\delta_3 \leftrightarrow \delta_1 \wedge \delta_2$	$\delta_2 + (1 - \delta_3) \ge 1$
	1 642 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(1 - \delta_1) + (1 - \delta_2) + \delta_3 \ge 1$

Mixed Logical Dynamical (MLD) systems

 By converting logic relations into mixed-integer linear inequalities a DHA can be rewritten as the Mixed Logical Dynamical (MLD) system

x(k + 1)	=	$Ax(k) + B_1u(k) + B_2\delta(k) + B_3z(k) + B_5$
y(k)	=	$Cx(k) + D_1u(k) + D_2\delta(k) + D_3z(k) + D_5$
$E_2\delta(k)$	÷	$E_3 z(k) \le E_4 x(k) + E_1 u(k) + E_5$

$$\begin{split} & x \in \mathbb{R}^{n_c} \times \{0,1\}^{n_b}, \, u \in \mathbb{R}^{m_c} \times \{0,1\}^{m_b} \\ & y \in \mathbb{R}^{p_c} \times \{0,1\}^{p_b}, \, \delta \in \{0,1\}^{r_b}, \, z \in \mathbb{R}^{r_c} \end{split}$$

- The translation from DHA to MLD can be automatized, see e.g. the language
 HYSDEL (HYbrid Systems DEscription Language) (Torrisi, Bemporad, 2004)
- MLD models allow solving MPC, verification, state estimation, and fault detection problems via mixed-integer programming

MLD Hybrid Model. Well-Posedness

Well-Posedness:

for a given $x = \begin{bmatrix} x_t \\ u_t \end{bmatrix} \Rightarrow x_{t+1}$ and y_t uniquely determined

Complete Well-Posedness:

well-posedness + uniquely determined δ_t and z_t , $\forall \begin{bmatrix} x_t \\ u_t \end{bmatrix}$

Well-posedness is sufficient for the computation of the state and output prediction

Complete well-posedness allows transformation into equivalent hybrid models

HYbrid System Description Language

- □ based on DHA
- enables description of discrete-time hybrid systems in a
 - compact way:
 - □automata and propositional logic
 - Continuous dynamics
 - \Box A/D and D/A conversion
 - □ definition of constraints
- automatically generates MLD models for MATLAB
- □ freely available from:
- http://control.ee.ethz.ch/~hybrid/hysdel/

27