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Mixed Integer Linear Programming
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Mixed Integer Quadratic Programming
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Branch & bound method for MIQP
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Branch & bound method for MIQP
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Branch & bound method for MIQP
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2• Branching rule: pick the index i such that zi is closest to 1 (max fractional part)

(Breu, Burdet,1974)

• Solve two new QP relaxations

QP0

QP1 QP2

• Possibly exploit warm starting from QP0 

when solving new relaxations QP1 and QP2

min 1 z′Qz + c′z

s.t.
2

Az ≤ b

0 ≤ zi ≤ 1, ∀i ∈ I

2
min 1 z′Qz + c′z

s.t. Az ≤ b

zi = 0

0 ≤ zj ≤ 1, ∀j ∈ I, j ≠ i 2
min 1 z′Qz + c′z

s.t. Az ≤ b

zi = 1

0 ≤ zj ≤ 1, ∀j ∈ I, j ≠ i



Branch & bound method for MIQP
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no
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Branch & bound method for MIQP
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The cost V0 of the best integer-feasible  

solution found so fare gives an upper  

bound V0 ≥ V ∗ on MIQP solution

QP0

QP1 QP2

keep branching ...

optimum
≥V0

?

no

yes

stop branching

(adding further equality  

constraints can only increase  

theoptimal cost)



Branch & bound method for MIQP
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• While solving the QP relaxation, if the dual cost is available it gives a
lower bound to the solution of the relaxed problem

• The QP solver can be stopped whenever the dual cost ≥ V0 !

This may save a lot of computations

• When no further branching is possible, either the MIQP problem is

recognized  infeasible or the optimal solution z∗ has been found
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Hybrid Model Predictive Control
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x(k + 1)

y(k)

E2δ(k)

=  Ax(k) + B1u(k) + B2δ(k) + B3z(k) + B5

=  Cx(k) + D1u(k) + D2δ(k) + D3z(k) + D5

+ E3z(k) ≤ E4x(k) + E1u(k) + E5

process

model-based  
optimizer measurements

reference

r(k)

control  
input

u(k)

output

y(k)

Use a hybrid dynamical model of the process to predict its  

future evolution and choose the“best”control action



MIQP formulation of Hybrid MPC
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MIQP formulation of Hybrid MPC
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Hybrid MPC for reference tracking
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Closed-loop convergence
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(Bemporad,Morari, 1999)

• Theorem. Let (xr , ur, δr, z r ) be the equilibrium corresponding to r.  

Assume x(0) such that the MIQP problem is feasible at time t = 0.

Then∀Q, R ≻ 0, σ > 0 the hybrid MPC closed-loop converges asymptotically

lim y(t) = r
t →∞

lim u(t) = ur
t →∞

t→ ∞

lim z( t)
t →∞

lim  x( t)    = x r

lim  δ(t)   = δr
t →∞

= zr

and all constraints are fulfilled at each time t ≥ 0.

• The proof easily follows from standard Lyapunov arguments (see next slide)

• Lyapunov asymptotic stability and exponential stability follows if proper  

terminal cost and constraints are imposed (Lazar,Heemels, Weiland, Bemporad, 2006)



Closed-loop convergence proof
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MILP formulation of Hybrid MPC
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MILP formulation of Hybrid MPC
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MILP formulation of Hybrid MPC
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Binary constraints make Mixed-Integer Programming (MIP) a hard 
problem  (NP-complete)

However, excellent general purpose branch & bound / branch & cut 
solvers  available for MILP and MIQP (Gurobi, CPLEX, FICO 
Xpress, GLPK, CBC, ...)

MIQP approaches tailored to embedded hybrid MPC applications:
B&B + (dual) active set methods for QP

(Leyffer, Fletcher, 1998) (Axehill, Hansson, 2006) (Bemporad, 2015) 
(Bemporad,  Naik, 2018)

B&B + interior point methods: (Frick, Domahidi, Morari, 2015)

B&B + fast gradient projection: (Naik, Bemporad, 2017)

B&B + ADMM: (Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

Mixed-Integer Programming solvers
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The complexity strongly depends on the problem structure and the 
initial setup

 In general:

Mixed-Integer programming is HARD

Efficient  general  purpose  solvers  for MILP/MIQP: CPLEX, 
XPRESS-MP ⇒ based on  Branch-And-Bound, Branch-And-
Cut methods + lots of heuristics

On-line optimization is good for applications allowing large sampling 
intervals  (typically minutes), requires expensive hardware and 
(even more) expensive  software

 For very small problems requiring fast sampling rate—> explicit 
solution of the MPC

MPC for Hybrid Systems - Complexity
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Hybrid MPC of an inverted pendulum
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θ

l

u

• Goal: swing the pendulum up

• Non-convex inputconstraint

u ∈ [−τm a x , −τm i n ] ∪ {0} ∪ [τmin, τmax]

• Nonlinear dynamicalmodel

l2M θ̈ = Mgl sin θ − � �̇ + u



Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Hybrid MPC of an inverted pendulum
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Example in supply chain management
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manufacturer B

manufacturer C

inventory 2

retailer 1

go to demodemos/hybrid/supply_chain.m



Example in supply chain management
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manufacturer A

manufacturer B

manufacturer C

inventory 1

inventory 2

retailer 1

• Continuous states:

x i j (k) =amount of j hold in inventory i

at time k (i = 1, 2, j = 1, 2)

• Continuous outputs:

yj (k) =amount of j sold at time k (j = 1, 2)

• Continuous inputs:

ui j (k) =amount of j taken from inventory i at time k (i = 1, 2, j = 1, 2)

• Binary inputs:

U X i j (k) = 1 if manufacturer X produces and send j to inventory i at time k



Example in supply chain management
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manufacturer A

manufacturer B

manufacturer C

inventory 1

inventory 2

retailer 1
• Max capacity of inventory i:

0 ≤
2

Σ
j = 1

x i j  ≤ x M i

• Max transportation from inventories:

0 ≤ ui j (k) ≤ u M

• A product can only be sent to one inventory:

UA11(k) and UA21(k) cannot be both =1

UB11(k) and UB21(k) cannot be both =1

UB12(k) and UB22(k) cannot be both =1

UC12(k) and UC22(k) cannot be both =1

• A manufacturer can only produce one type of product at one time:  

[UB11(k) or UB21(k) = 1], [UB12(k) or UB22(k) = 1] cannot be both true



Supply chain management - Dynamics
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Supply chain management - HYSDEL 
code

39

SYSTEM supply_chain{  

INTERFACE {

STATE { REAL x11 [0,10];

REAL x12 [0,10];

REAL x21 [0,10];  

REAL x22 [0,10]; }

INPUT { REAL u11 [0,10];  

REAL u12 [0,10];

REAL u21 [0,10];

REAL u22 [0,10];

BOOL UA11,UA21,UB11,UB12,UB21,UB22,UC12,UC22; }

OUTPUT {REAL y1,y2;}

PARAMETER { REAL PA1,PB1,PB2,PC2,xM1,xM2;}

} 

IMPLEMENTATION {

AUX { REAL zA11, zB11, zB12, zC12, zA21, zB21, zB22, zC22;}

DA { zA11 = {IF UA11 THEN PA1 ELSE 0};

zB11 = {IF UB11 THEN PB1 ELSE 0};

zB12 = {IF UB12 THEN PB2 ELSE 0};

zC12 = {IF UC12 THEN PC2 ELSE 0};  

zA21 = {IF UA21 THEN PA1 ELSE 0};  

zB21 = {IF UB21 THEN PB1 ELSE 0};  

zB22 = {IF UB22 THEN PB2 ELSE 0};  

zC22 = {IF UC22 THEN PC2 ELSE 0}; }

CONTINUOUS {x11 = x11 + zA11 + zB11 - u11;

x12 = x12 + zB12 + zC12 - u12;

x21 = x21 + zA21 + zB21 - u21;

x22 = x22 + zB22 + zC22 - u22; }

OUTPUT { y1 = u11 + u21;

y2 = u12 + u22; }

MUST {  ~(UA11 & UA21);

~(UC12 & UC22);

~((UB11 | UB21) & (UB12 | UB22));

~(UB11 & UB21);

~(UB12 & UB22);  

x11+x12 <= xM1;  

x11+x12 >=0;  

x21+x22 <= xM2;  

x21+x22 >=0; }

} }

manufacturer A

manufacturer B

manufacturer C

inventory 1

inventory 2

retailer 1



Supply chain management - Objectives

40

manufacturer A

manufacturer B

manufacturer C

inventory 1

inventory 2

retailer 1

• Meet customer demand as much as possible:

y1 ≈ r1, y2 ≈ r2

• Minimize transportation costs

• Fulfill all constraints



Supply chain management - Performance 
index

41



Supply chain management - Simulation 
setup
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manufacturer A

manufacturer B

manufacturer C

inventory 1

inventory 2

retailer 1

% weights output2 #1, #2

% output weights

>> refs.y=[1 2];

>> Q.y=diag([10 10]);

…

>> Q.norm=Inf;

>> N=2;

>> limits.umin=umin;

>> limits.umax=umax;

>> limits.xmin=xmin;

>> limits.xmax=xmax;

% infinity norms

% optimization horizon

% constraints

% xij(k)>=0

% xij(k)<=xMi (redundant)

>> C=hybcon(S,Q,N,limits,refs);

>> C

Hybrid controller based on MLD model S <supply_chain.hys>

[Inf-norm]

4 state measurement(s)

2 output reference(s)

12 input reference(s)

0 state reference(s)

0 reference(s) on auxiliary continuous z-variables

44 optimization variable(s) (8 continuous, 12 binary)

176 mixed-integer linear inequalities  

sampling time = 1, MILP solver = 'glpk'

Type "struct(C)" for more details.

>>



Supply chain management - Simulation 
results
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% Initial condition

% Reference trajectories

>> x0=[0;0;0;0];

>> r.y=[6+2*sin((0:Tstop-1)'/5)  

5+3*cos((0:Tstop-1)'/3)];

>> [XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);

CPU time: ≈ 13 ms/sample (GLPK) or 9 ms (CPLEX) on Macbook Pro 3GHz Intel Core i7
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manufacturer B

manufacturer C

inventory 1

inventory 2

retailer 1

setup
% weights output2 #1, #2

% output weights
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>> refs.y=[1 2];

>> Q.y=diag([10 10]);

…

>> Q.norm=Inf;

>> N=2;

>> limits.umin=umin;

>> limits.umax=umax;

>> limits.xmin=xmin;

>> limits.xmax=xmax;

% infinity norms

% optimization horizon

% constraints

% xij(k)>=0

% xij(k)<=xMi (redundant)

>> C=hybcon(S,Q,N,limits,refs);

>> C

Hybrid controller based on MLD model S <supply_chain.hys>

[Inf-norm]

4 state measurement(s)

2 output reference(s)

12 input reference(s)

0 state reference(s)

0 reference(s) on auxiliary continuous z-variables

44 optimization variable(s) (8 continuous, 12 binary)

176 mixed-integer linear inequalities  

sampling time = 1, MILP solver = 'glpk'

Type "struct(C)" for more details.

>>



Hybrid systems: mixture of continuous and discrete dynamics
Many important systems fall in this class
Many tricks involved in modeling - automatic systems available to 

convert to consistent form

Optimization problem becomes a mixed-integer linear / quadratic 
program
NP-hard (exponential time to solve)
Advanced commercial solvers available

MPC theory (invariance, stability, etc) applies
Computing invariant sets is usually extremely difficult

Computing the optimal solution is extremely difficult (sub-optimal ok

Hybrid MPC: Summary
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