كنترل پيش بين **Model Predictive Control**

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Hybrid MPC

Modeling of Hybrid Systems

OIntroduction

Examples of Hybrid Systems

Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

■ Optimal Control of Hybrid Systems

Model Predictive Control of Hybrid Systems

MPC of Hybrid Systems Examples

Optimal Control for Hybrid Systems: General Formulation

Consider the CFTOC problem:

$$
J^*(x(t)) = \min_{U_0} p(x_N) + \sum_{k=0}^{N-1} q(x_k, u_k, \delta_k, z_k),
$$

$$
\sum_{k=0}^{N-1} q(x_k, u_k, \delta_k, z_k),
$$

$$
E_0 \delta_k + 1 = A x_k + B_1 u_k + B_2 \delta_k + B_3 z_k
$$

$$
E_2 \delta_k + E_3 z_k \le E_4 x_k + E_1 u_k + E_5
$$

$$
x_N \in \mathcal{X}_f
$$

$$
x_0 = x(t)
$$

where $x \in \mathbb{R}^{n_c} \times \{0,1\}^{n_b}$, $u \in \mathbb{R}^{m_c} \times \{0,1\}^{m_b}$, $y \in \mathbb{R}^{p_c} \times \{0,1\}^{p_b}$, $\delta \in \{0,1\}^{r_b}$ and $z \in \mathbb{R}^{r_c}$ and

$$
U_0 = \{u_0, u_1, \ldots, u_{N-1}\}
$$

Mixed Integer Optimization

3

Mixed Integer Linear Programming

Consider the following MILP:

$$
\begin{array}{ll}\n\inf_{[z_c, z_b]} & c_c' z_c + c_b' z_b + d \\
\text{subj. to} & G_c z_c + G_b z_b \le W \\
& z_c \in \mathbb{R}^{s_c}, \ z_b \in \{0, 1\}^{s_b}\n\end{array}
$$

where $z_c \in \mathbb{R}^{s_c}$, $z_b \in \{0, 1\}^{s_b}$

- \blacksquare MILP are nonconvex, in general.
- For a fixed \overline{z}_b the MILP becomes a linear program:

$$
\begin{array}{ll}\n\inf_{[z_c, z_b]} & c_c' z_c + (c' b \bar{z}_b + d) \\
\text{subj. to} & G_c z_c \le W - G_b \bar{z}_b \\
& z_c \in \mathbb{R}^{s_c}\n\end{array}
$$

Brute force approach to solution: enumerating the 2^{s_b} integer values of the variable z_b and solve the corresponding LPs. By comparing the 2^{s_b} optimal costs one can find the optimizer and the optimal cost of the MILP.

Mixed Integer Quadratic Programming

Consider the following MIQP:

$$
\inf_{\substack{[z_c, z_b] \\ \text{subj. to}}} \quad \frac{\frac{1}{2}z'Hz + q'z + r}{2c^2c^2 + 6bz^2} \le W
$$
\n
$$
z_c \in \mathbb{R}^{s_c}, \ z_b \in \{0, 1\}^{s_b}
$$
\n
$$
z = [z_c, z_b], s = s_c + s_d
$$

where $H \succeq 0$, $z_c \in \mathbb{R}^{s_c}$, $z_b \in \{0, 1\}^{s_b}$.

- \blacksquare MIQP are nonconvex, in general.
- For a fixed integer value \overline{z}_b of z_b , the MIQP becomes a quadratic program:

$$
\inf_{\substack{[z_c] \\ \text{subj. to}}} \frac{\frac{1}{2}z_c'H_cz_c + q_c'z + k}{G_cz_c \le W - G_b\overline{z}_b}
$$

$$
z_c \in \mathbb{R}^{s_c}
$$

Brute force approach to the solution: enumerating all the 2^{s_b} **integer values** of the variable z_b and solve the corresponding QPs. By comparing the 2^{s_b} optimal costs one can derive the optimizer and the optimal cost of the MIQP.

Branch & bound method for MIQP

(Dakin, 1965)

• We want to solve the following MIQP

$$
\begin{array}{ll}\n\min & V(z) \triangleq \frac{1}{2} z' Q z + c' z \\
\text{s.t.} & Az \leq b \\
& z_i \in \{0, 1\}, \forall i \in I\n\end{array}\n\quad\n\begin{array}{ll}\n\text{ } z \in \mathbb{R}^n \\
Q = Q' \succeq 0 \\
I \subseteq \{1, \dots, n\}\n\end{array}
$$

- Branch & Bound (B&B) is the simplest (and most popular) approach to solve the problem to optimality
- Key idea:
	- for each binary variable $z_i, i \in I$, either set $z_i = 0$, or $z_i = 1$, or $z_i \in [0, 1]$
	- solve the corresponding QP relaxation of the MIQP problem
	- use QP result to decide the next combination of fixed/relaxed variables

Branch & bound method for MIQP

The cost V_0 of the best integer-feasible solution found so fare gives an upper bound $V_0 \geq V^*$ on MIQP solution

Branch & bound method for MIQP

- While solving the QP relaxation, if the **dual cost** is available it gives a **lower bound** to the solution of the relaxed problem
- The QP solver can be stopped whenever the dual cost $\geq V_0$!

This may save a lot of computations

• When no further branching is possible, either the MIQP problem is recognized infeasible or the optimal solution z^* has been found

Hybrid MPC

Modeling of Hybrid Systems

OIntroduction

Examples of Hybrid Systems

Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

Optimal Control of Hybrid Systems

Model Predictive Control of Hybrid Systems

MPC of Hybrid Systems Examples

• Predictions can be constructed exactly as in the linear case

$$
x_k = A^k x_0 + \sum_{j=0}^{k-1} A^j (B_1 u_{k-1-j} + B_2 \delta_{k-1-j} + B_3 z_{k-1-j} + B_5)
$$

Hybrid MPC for reference tracking

• Consider the more general set-point tracking problem

$$
\min_{\xi} \sum_{k=0}^{N-1} \|y_k - r\|_Q^2 + \|u_k - u_r\|_R^2 + \|\sigma\left(\|x_k - x_r\|_2^2 + \|\delta_k - \delta_r\|_2^2 + \|z_k - z_r\|_2^2\right)
$$

MLD model equations s.t.

$$
x_0 = x(t
$$

$$
x_N=x_i
$$

with $\sigma > 0$ and $||v||_Q^2 = v'Qv$

• The equilibrium $(x_r, u_r, \delta_r, z_r)$ corresponding to r can be obtained by solving the following mixed-integer feasibility problem

$$
x_r = Ax_r + B_1u_r + B_2\delta_r + B_3z_r + B_5
$$

\n
$$
r = Cx_r + D_1u_r + D_2\delta_r + D_3z_r + D_5
$$

\n
$$
E_2\delta_r + E_3z_r \le E_4x_r + E_1u_r + E_5
$$

and **all constraints are fulfilled** at each time $t \geq 0$.

• The proof easily follows from standard Lyapunov arguments (see next slide)

 $t \rightarrow \infty$

• **Lyapunov asymptotic stability** and **exponential stability** follows if proper terminal cost and constraints are imposed (Lazar, Heemels, Weiland, Bemporad, 2006)

Closed-loop convergence proof

П

- Main idea: Use the value function $V^*(x(t))$ as a Lyapunov function
- Let $\xi_t = [u_0^t, \ldots, u_{N-1}^t, \delta_0^t, \ldots, \delta_{N-1}^t, z_0^t, \ldots, z_{N-1}^t]$ be the optimal sequence @t
- By construction $@t+1 \bar{\xi} = [u_1^t, \ldots, u_{N-1}^t, u_r, \delta_1^t, \ldots, \delta_{N-1}^t, \delta_r, z_0^t, \ldots, z_{N-1}^t, z_r]$ is feasible, as it satisfies all MLD constraints + terminal constraint $x_N = x_r$
- The cost of $\bar{\xi}$ is $V^*(x(t)) ||y(t) r||_Q^2 ||u(t) u_r||_R^2$ $-\sigma \left(\|\delta(t) - \delta_r\|_2^2 + \|z(t) - z_r\|_2^2 + \|x(t) - x_r\|_2^2 \right) \geq V^*(x(t+1))$
- $V^*(x(t))$ is monotonically decreasing and ≥ 0 , so $\exists \lim_{t \to \infty} V^*(x(t)) \in \mathbb{R}$
- Hence $||y(t) r||_O^2$, $||u(t) u_r||_R^2$, $||\delta(t) \delta_r||_2^2$, $||z(t) z_r||_2^2$, $||x(t) x_r||_2^2 \to 0$
- Since $R, Q \succ 0$, $\lim_{t \to \infty} y(t) = r$ and all other variables converge.

Global optimum is not needed to prove convergence !

MILP formulation of Hybrid MPC

• Finite-horizon optimal control problem using infinity norms

$$
\min_{k=0} \sum_{k=0}^{N-1} \|Qy_k\|_{\infty} + \|Ru_k\|_{\infty} \n\sum_{k=0}^{N-1} \|Qy_k\|_{\infty} + \|Ru_k\|_{\infty} \n\sum_{k=0}^{N-1} x_{k+1} = Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5 \qquad Q \in \mathbb{R}^{m_y \times n_y} \n\sum_{k=0}^{N-1} y_k = Cx_k + D_1 u_k + D_2 \delta_k + D_3 z_k + D_5 \qquad R \in \mathbb{R}^{m_u \times n_u} \nE_2 \delta_k + E_3 z_k \le E_4 x_k + E_1 u_k + E_5
$$

• Introduce additional variables $\epsilon_k^y, \epsilon_k^u, k = 0, \ldots, N-1$

$$
\begin{cases} \epsilon_k^y \geq \|Qy_k\|_{\infty} \\ \epsilon_k^u \geq \|Ru_k\|_{\infty} \end{cases} \longrightarrow \begin{cases} \epsilon_k^y \geq \pm Q^i y_k \\ \epsilon_k^u \geq \pm R^i u_k \end{cases} \quad Q^i = i\text{th row of } Q
$$

MILP formulation of Hybrid MPC

• Finite-horizon optimal control problem using infinity norms

$$
\min_{k=0} \sum_{k=0}^{N-1} \|Qy_k\|_{\infty} + \|Ru_k\|_{\infty} \n\sum_{k=0}^{N-1} \|Qy_k\|_{\infty} + \|Ru_k\|_{\infty} \n\sum_{k=0}^{N-1} x_{k+1} = Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k + B_5 \qquad Q \in \mathbb{R}^{m_y \times n_y} \n\sum_{k=0}^{N-1} y_k = Cx_k + D_1 u_k + D_2 \delta_k + D_3 z_k + D_5 \qquad R \in \mathbb{R}^{m_u \times n_u} \nE_2 \delta_k + E_3 z_k \le E_4 x_k + E_1 u_k + E_5
$$

• Introduce additional variables $\epsilon_k^y, \epsilon_k^u, k = 0, \ldots, N-1$

$$
\begin{cases} \epsilon_k^y \geq \|Qy_k\|_{\infty} \\ \epsilon_k^u \geq \|Ru_k\|_{\infty} \end{cases} \qquad \qquad \begin{cases} \epsilon_k^y \geq \pm Q^i y_k \\ \epsilon_k^u \geq \pm R^i u_k \end{cases} \qquad Q^i = i\text{th row of } Q
$$

• Same approach applies to any convex piecewise affine stage cost

21

Mixed-Integer Programming solvers

- Binary constraints make Mixed-Integer Programming (MIP) a hard problem (NP-complete)
- However, excellent general purpose branch & bound / branch & cut solvers available for MILP and MIQP (Gurobi, CPLEX, FICO Xpress, GLPK, CBC, ...)
- MIQP approaches tailored to embedded hybrid MPC applications: \Box B&B + (dual) active set methods for QP
- (Leyffer, Fletcher, 1998) (Axehill, Hansson, 2006) (Bemporad, 2015) (Bemporad, Naik, 2018)
	- B&B + interior point methods: (Frick, Domahidi, Morari, 2015)
	- B&B + fast gradient projection: (Naik, Bemporad, 2017)
	- B&B + ADMM: (Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

MPC for Hybrid Systems - Complexity

 The complexity strongly depends on the problem structure and the initial setup

In general:

Mixed-Integer programming is HARD

- Efficient general purpose solvers for MILP/MIQP: CPLEX, XPRESS-MP ⇒ based on **Branch-And-Bound, Branch-And-Cut methods** + lots of heuristics
- On-line optimization is good for applications allowing large sampling intervals (typically **minutes**), requires expensive hardware and (even more) expensive software
- For very small problems requiring fast sampling rate—> **explicit solution of the MPC**

Hybrid MPC

Modeling of Hybrid Systems

OIntroduction

Examples of Hybrid Systems

Piecewise Affine (PWA) Systems

Mixed Logical Dynamical (MLD) Hybrid Model

Optimal Control of Hybrid Systems

Model Predictive Control of Hybrid Systems

MPC of Hybrid Systems Examples

• Approximate $sin(\theta)$ as the piecewise linear function

$$
\sin \theta \approx s \triangleq \begin{cases}\n-\alpha \theta - \gamma & \text{if } \theta \leq -\frac{\pi}{2} \\
\alpha \theta & \text{if } |\theta| \leq \frac{\pi}{2} \\
-\alpha \theta + \gamma & \text{if } \theta \geq \frac{\pi}{2}\n\end{cases}
$$

• Get optimal values for α and γ by minimizing fit error

$$
\begin{aligned}\n\min_{\alpha} \qquad & \int_{0}^{\frac{\pi}{2}} (\alpha \theta - \sin(\theta))^2 d\theta \\
& = \frac{\theta}{2} - \frac{1}{2} \cos \theta \sin \theta - 2\alpha \sin \theta + \frac{1}{3} \alpha^2 \theta^3 + 2\alpha \theta \cos \theta \bigg|_{0}^{\frac{\pi}{2}} = \frac{1}{24} \pi^3 \alpha^2 - 2\alpha + \frac{\pi}{4}\n\end{aligned}
$$

- Zeroing the derivative with respect to α gives $\alpha = \frac{24}{\pi^3}$
- Requiring $s = 0$ for $\theta = \pi$ gives $\gamma = \frac{24}{\pi^2}$

$$
\begin{aligned}\n[\delta_3 = 1] &\leftrightarrow \quad [\theta \le -\frac{\pi}{2}] \\
[\delta_4 = 1] &\leftrightarrow \quad [\theta \ge \frac{\pi}{2}]\n\end{aligned}
$$

along with the logic constraint

$$
\delta_4 = 1] \rightarrow [\delta_3 = 0]
$$

• Set
$$
s = \alpha \theta + s_3 + s_4
$$
 with

$$
s_3 = \begin{cases} -2\alpha\theta - \gamma & \text{if } \delta_3 = 1 \\ 0 & \text{otherwise} \end{cases}
$$

$$
s_4 = \begin{cases} -2\alpha\theta + \gamma & \text{if } \delta_4 = 1 \\ 0 & \text{otherwise} \end{cases}
$$

27

• To model the constraint $u \in [-\tau_{\max}, -\tau_{\min}] \cup \{0\} \cup [\tau_{\min}, \tau_{\max}]$ introduce the auxiliary variable

$$
\tau_A = \begin{cases} u & \text{if } -\tau_{\min} \le u \le \tau_{\min} \\ 0 & \text{otherwise} \end{cases}
$$

and let $u - \tau_A$ be the torque acting on the pendulum, with

$$
u\in[-\tau_{\max},\tau_{\max}]
$$

• The input u has no effect on the dynamics for $u \in [-\tau_{\min}, \tau_{\min}]$. Hence, the solver will not choose values in that range if u is penalized in the MPC cost

• Set $x \triangleq \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$, $y \triangleq \theta$ and transform into linear model

$$
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{q}{t} \alpha & -\frac{\beta}{t^2 M} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{q}{t} & \frac{1}{t^2 M} \end{bmatrix} \begin{bmatrix} s_3 + s_4 \\ u - \tau_A \end{bmatrix}
$$

$$
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
$$

• Discretize in time with sample time $T_s = 50$ ms

$$
\begin{aligned}\n\begin{aligned}\nx_1(k+1) \\
x_2(k+1)\n\end{aligned} &= A \begin{bmatrix} x_1(k) \\
x_2(k) \end{bmatrix} + B \begin{bmatrix} s_3(k) + s_4(k) \\
u(k) - \tau_A(k) \end{bmatrix} \\
y(k) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) \\
A \triangleq e^{T_s A_c}, B \triangleq \int_0^{T_s} e^{tA_c} B_c dt\n\end{aligned}
$$

/* Bubrid model of a pandulus

(C) 2012 by A. Demporad, April 2012 4/ **DA 4** SYSTEM hyb pendulum (tanA - (IT dl & d2 THEN u ELSE 0) ; INTERFACE (a3 - IIF d3 THEN -2*aloha*th-casma ELSE O): at = [IF d4 THEN -2*alpha*th*gamma ELSE 0): STATE (REAL th f=2*mi.2*mil: REAL thdot [-20,20]: CONTINUOUS (INPUT (th. - all'th+al2"thdot+bl1"(s3+s4)+bl2"(u-tsuA); REAL m (-11.11) thdot = a21"thea22"thdot4b21"(a3+a4)4b22"(u-tauA); $\ddot{\textbf{a}}$ others in REAL v: ouveps: 1 $y = thx$ PARAMETER 8 REAL tau min, alpha, qamma; REAL all.al2.a21.a22.b11.b12.b21.b22. **MUST I** $d4 - 3 + d3 +$ ٠ŧ, well = Set2 + IMPLEMENTATION { AUX 4 REAL tauh, a3, s4; BOOL 41.42.43.44: 30.1 di = uc-tau min: d2 = u>==tau min: $d3 = th \leftarrow -0.5$ "pi: >> S=mld('pendulum',Ts); $d4 = th$ 3 = 0.5*pi;

go to demo demos/hybrid/pendulum init.m

31

- Open-loop simulation from initial condition $\theta(0) = 0, \dot{\theta}(0) = 0$
- Input torque excitation

$$
u(t) = \begin{cases} 2 \text{ Nm} & \text{if } 0 \le t \le 10 \text{ s} \\ 0 & \text{otherwise} \end{cases}
$$

• MPC cost function

$$
\sum_{k=0} |y_k - r(t))| + |0.01u_k|
$$

• MPC constraints $u \in [-\tau_{\max}, \tau_{\max}]$

>> C=hybcon(S,Q,N,limits,refs);

 $100-42$

Hybrid controller based on MLD model S <pendulum.hys> [Inf-norm]

2 state massurement(s) 1 output caference(s) 1 input reference(s) 0 state reference(s) 8 reference(s) on auxiliary continuous z-variables

55 optimization variable(s) (30 continuous, 25 binary) 155 mixed-integer linear inequalities sampling time = 0.05, HILP solver = 'qurobi'

Type "struct(C)" for more details. 500

- \gg refs.y=1; >> refs.u=1; $>> 0. y=1$; $>> Q. y=0.01;$
- \gg 0. rho=Inf;
- \geq 0. norm=Inf;
- $>> N=5$;
- >> limits.umin = 10;
- >> limits.umax=10;

33

• **Continuous inputs**:

 $u_{ij}(k)$ =amount of *j* taken from inventory *i* at time k ($i = 1, 2, j = 1, 2$)

• **Binary inputs**:

 $U_{Xij}(k) = 1$ if manufacturer X produces and send *j* to inventory *i* at time *k*

Example in supply chain management

- Max capacity of inventory *i*: $0 \leq \sum x_{ij} \leq x_{Mi}$ 2 $i = 1$
- Max transportation from inventories: $0 \leq u_{ij}(k) \leq u_M$
- A product can only be sent to one inventory:

 $U_{A11}(k)$ and $U_{A21}(k)$ cannot be both =1 $U_{B11}(k)$ and $U_{B21}(k)$ cannot be both =1 $U_{B12}(k)$ and $U_{B22}(k)$ cannot be both =1 $U_{C12}(k)$ and $U_{C22}(k)$ cannot be both =1

³⁷ [$U_{B11}(k)$ or $U_{B21}(k) = 1$], [$U_{B12}(k)$ or $U_{B22}(k) = 1$] cannot be both true • A manufacturer can only produce one type of product at one time:

Supply chain management - Dynamics

- Let P_{A1} , P_{B1} , P_{B2} , P_{C2} = amount of product of type 1 (2) produced by $A(B, C)$ in one time interval
- Muleston's C **International Accounts** -ék) #(10,#150) Mulenton's 2

• Level of inventories

$$
\begin{cases}\nx_{11}(k+1) = x_{11}(k) + P_{A1}U_{A11}(k) + P_{B1}U_{B11}(k) - u_{11}(k) \nx_{12}(k+1) = x_{12}(k) + P_{B2}U_{B12}(k) + P_{C2}U_{C12}(k) - u_{12}(k) \nx_{21}(k+1) = x_{21}(k) + P_{A1}U_{A21}(k) + P_{B1}U_{B21}(k) - u_{21}(k) \nx_{22}(k+1) = x_{22}(k) + P_{B2}U_{B22}(k) + P_{C2}U_{C22}(k) - u_{22}(k)\n\end{cases}
$$

• Retailer: all items requested from inventories are sold

$$
\begin{cases}\ny_1 = u_{11} + u_{21} \\
y_2 = u_{12} + u_{22}\n\end{cases}
$$

Supply chain management - HYSDEL code

```
39
 SYSTEM supply_chain{ 
 INTERFACE {
         STATE { REAL x11 [0,10];
                 REAL x12 [0,10];
                 REAL x21 [0,10]; 
                 REAL x22 [0,10]; }
         INPUT { REAL u11 [0,10]; 
          REAL u12 [0,10];
          REAL u21 [0,10];
          REAL u22 [0,10];
          BOOL UA11,UA21,UB11,UB12,UB21,UB22,UC12,UC22; }
         OUTPUT {REAL y1,y2;}
         PARAMETER { REAL PA1,PB1,PB2,PC2,xM1,xM2;}
 } 
 IMPLEMENTATION {
         AUX { REAL zA11, zB11, zB12, zC12, zA21, zB21, zB22, zC22;}
         DA { zA11 = {IF UA11 THEN PA1 ELSE 0};
                 zB11 = {IF UB11 THEN PB1 ELSE 0};
                 zB12 = {IF UB12 THEN PB2 ELSE 0};
                 zC12 = {IF UC12 THEN PC2 ELSE 0}; 
                 zA21 = {IF UA21 THEN PA1 ELSE 0}; 
                 zB21 = {IF UB21 THEN PB1 ELSE 0}; 
                 zB22 = {IF UB22 THEN PB2 ELSE 0}; 
                 zC22 = {IF UC22 THEN PC2 ELSE 0}; }
```


Supply chain management - Performance index

>> C=hybcon(S,Q,N,limits,refs);

\Rightarrow C

Hybrid controller based on MLD model S <supply chain.hys>

[Inf-norm]

- 4 state measurement(s)
- 2 output reference(s)
- 12 input reference(s)
- 0 state reference(s)
- 0 reference(s) on auxiliary continuous z-variables

44 optimization variable(s) (8 continuous, 12 binary) 176 mixed-integer linear inequalities sampling time = 1, MILP solver = $'$ glpk'

Type "struct(C)" for more details.

>>

42

Supply chain management - Simulation results

>> r.y=[6+2*sin((0:Tstop-1)'/5) 8 Reference trajectories $>> x0=[0;0;0;0]$; 5+3*cos((0:Tstop-1)'/3)];

% Initial condition

 $>>$ $[XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);$

CPU time: ≈ 13 ms/sample (GLPK) or 9 ms (CPLEX) on Macbook Pro 3GHz Intel Core i7

setup

- $>$ refs.y= $[1 2];$
- >> Q.y=diag([10 10]);
- …
- >> Q.norm=Inf;
- $>> N=2$:
- >> limits.umin=umin;
- >> limits.umax=umax;
- >> limits.xmin=xmin;
- >> limits.xmax=xmax;
- % weights output2 #1, #2 % output weights
- % infinity norms % optimization horizon % constraints
- $% xij(k)>=0$ % xij(k)<=xMi (redundant)

>> C=hybcon(S,Q,N,limits,refs);

 \Rightarrow C

Hybrid controller based on MLD model S <supply chain.hys>

[Inf-norm]

4 state measurement(s) 2 output reference(s) 12 input reference(s) 0 state reference(s) 0 reference(s) on auxiliary continuous z-variables

44 optimization variable(s) (8 continuous, 12 binary) 176 mixed-integer linear inequalities sampling time = 1, MILP solver = 'glpk'

Type "struct(C)" for more details. \rightarrow

CARP ARE AND ALLES AND ARREST AND ARE SOLVED AND SOLV

Hybrid MPC: Summary

Hybrid systems: mixture of continuous and discrete dynamics

- Many important systems fall in this class
- Many tricks involved in modeling automatic systems available to convert to consistent form
- Optimization problem becomes a mixed-integer linear / quadratic program
	- NP-hard (exponential time to solve)
	- Advanced commercial solvers available
- MPC theory (invariance, stability, etc) applies
	- Computing invariant sets is usually extremely difficult
	- Computing the optimal solution is extremely difficult (sub-optimal ok