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{ Dynamic State Estimation for Dynamical} @

Systems

L Introduce dynamic state estimation (DSE)
[ Discuss classes of observers/estimators + Applications Brieﬂy
[ discuss stochastic estimators — Kalman filter

L Deterministic observers

] State observer for MPC
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Introduction @

O What is dynamic state estimation (DSE)?
—Accurateiy depicting what’s happening inside a system

[ Precisely: estimating internal system states

—In circuits: voltages and currents

—Water networks: amount of water flowing
—Chemical plants: concentrations

—Robots and UAVs: location & speed

—Humans: temperature, blood pressure, glucose level
[ So how does having estimates help me?

—Well, if you have estimates, you can do control
—And if you do good control, you become better off!

d In power systems: DSE can tell me what’s happening to generators &
lines= Preventing/ Predicting Blackouts!




Introduction @
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dDynamic observer: dynamical system that observes the
internal system  state, given a set of input & output
measurements

(dState estimator: estimates the system’s states under different
assumptions  Estimators: utilized for state estimation and
parametric identification

dObservers: used for deterministic systems, Estimators: for
stochastic dynamical systems

QIf statistical information on process and measurement is
available, stochastic estimators can be utilized

A This assumption is strict for many dynamical systems

1 Quantitying distributions of measurement and process noise is

very Challenging
(-
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{Stochastic estimators } @

(J Stochastic estimators:

—Extended Kalman Filter (EKF)

—Unscented Kalman filter (UKF)

—Square-root Unscented Kalman filter (SRUKF)
—Cubature Kalman Filter (CKF)

[J Stochastic estimators used if distributions of measurement & process
noise are available

| System dynamics:
xi = f (Xk=1, Uk—1) + Wi—1

Vi =h(xi, ur)+ v
~Wg—1 ~ N (0, Or—1) and vy ~ N (0, Ry ): process &
measurement noise
—Qr—1 and Ry : covariance of -1 &

L




Stochastic Estimator: The Extended

Kalman Filter

@ Most stochastic estimators have two main steps: predictions & updates
@ EKF (=KF+Nonlinearities) algorithm:

(1) Prediction:

State esimate prediction:  Zyp—1 = f(Er_1jk—1, Uk—1)

Predicted covariance estimate: Pyjr_1 = F;{_lP;._._”k_lFI_I + Q.

(2) Update:
Innovation or measurement residual: U = 2k — h(Zrjp—1)
Innovation (or residual) covariance: Sk = H;_-PW:_IH;I + Ry

Near-optimal Kalman gain: K = PH,,:_IHIS,L_.I
Updated covariance estimate: Py = (I — K Hi)Prjr—1

Updated state estimate: &y = &gp_1 + Kriy

dh
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Determinstic Estimators (Observers) @
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® Deterministic observers for:

—LTI systems

—LTI systems + Unknown Inputs

—LTI systems + Unknown Inputs + Measurement Noise
—Nonlinear systems (bounded nonlinearity)

—Nonlinear systems + Unknown Inputs

—Nonlinear systems + Unknown Inputs + Measurement
—LTI delayed systems

—LTI delayed systems + Unknown Inputs

—Hybrid systems

—... and many more

*Deterministic estimators used if measurement and process noise
distributions are not available

L
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Determinstic Estimators (Observers) @
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Controllers often need values for the full state-vector of the plant
This is nearly impossible in most complex systems

Why?You simply can’t put sensors everywhere, and some states are

inaccessible

Observer: a dynamical system that estimates the states of the system

based on the plant’s inputs and outputs
Who introduced observers? David Luenberger in 1963, Ph.D.

dissertation
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Luenberger()bserver and Plant Dynamics @
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T = Axr + Bu

@ Plant Dynamics: { o — e, {0 ek greem

— i = Af+ Bu+ L(y — i) + Innovation
Observers Dynamics: T s
TRRETIErs YR { $ = Ai+ Bu+LC(z— %)

@ Error dynamics %

é=i—i=(A=LC)(xz—2)—0, ast — oo, iff Xi(A— LC) <0
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x=Ax+Bu

° State Estimate
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Observer-Based Control
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@ After designing an observer for an LTI system, obtain state estimates
(2(t))

@ What to do with #(¢)? Well, use it for control = Observer-Based Control!

@ OBC dynamics:

T
{7

Af + Innovation(y, u)
ControlLaw(v), v = [i? y 7‘]

() -| u = ControlLaw(v)

= Ar + Bu -

r

T = A# + Innovation(y, u) |-
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Observer-Based Control

@ Closed-loop dynamics:

Ar — BK#

Tr =

& = Ai+ L(y—1i)—- BK3i

1 —-BK

T )
#l T |LC A-LC-BK| |#

@ Transformation: |~ | = * | = 0 3,,:
e T —T I =1\ |x

@ Hence, we can write:

a If the system is controllable & observable = eig(A) can be arbitrarily

assigned by proper K and L

@ @ What if the system is stabilizable and detectable

?
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State observer for MPC @
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r(t) w(t) u(t)
Optimizer |——*| Process —— 3y Mmeasured
reference 1{1} outputs

I #(t)

state estimate

Observer [+—

Full state x(t) of process may not be available, only outputs (1)
e Evenif z(t) is available, noise should be filtered out

* Prediction and process models may be quite different

The state x(#) may not have any physical meaning
(e.g., in case of model reduction or subspace identification)

We need to use a state observer

e Example: Luenberger observer #(t + 1) = Az(t) + Bu(t) + L(y(t) — CZz(t))




A

Extended model for observer design @

l.l!.(t ) MVs [ Manipulated Variables)

-]-_r(t) MDs (Measured Disturbances)

n d{i)_) I ()

white noise
innavations

—— UMDs
{Unmeasured

Disturbances)

unmeasured disturbance model

'.’L'd'{ﬂ + 1}
d(t)

;i:l:d{f,] + E‘Ildfi)
Cz4(t) + Dng(t)

[ {1 12 "1&@'
'-’ruiw/: '-7"7&/') [-ad}]

>Y.(t)

P I a nt CVs (Controlled Variables) | .o

model

Dutputs

Zml(t)

W+

n,(t) Messorement m(t)

wihite foise oded
inmovations

>(O)——>Yu(?)

(Measured Outputs)

measurement noise model

Tt + 1)
m(t)

Az (t) + Brm(t)
Czm(t) + D, (t)

* Note: the measurement noise model is not needed during optimization
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Kalman filter design

e Plant model

Cz(t+1) =  Az(t) + Buu(t) + Byv(t) + Bad(t)
y(t) = Cz(t) + Dyv(t) + Dad(t)
e Full model for designing Kalman filter T;;THMK:T"
x(t41) [ AB4C x(t)
rg(t+1) = r4(t) t t
Lii;:+1;] [ 8.0 U} Lim] 5 Ju+ [§ o+
BdD
E ]nd(t)+[_] i (t) + [ 0" | ma(t)
z(t) — ~
Ym(t) = [Cm Dy €] [ Id({t)]} + Dymv(k) + Dyna(t) + Dmnim(t)
Em it

e ng4(k) =source of modeling errors
® n,,(k) =source of measurement noise
e n,(k)=white noise on input u (added to compute the Kalman gain)
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[/0O feedthrough

We always assumed no feedthrough from = to measured y

yr = Cxp+Dup + Dyvg + Dyd,,,

Dy, =0

&
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This avoids static loops between state observer, as 7(t|t) depends on u(t) via

U (|t — 1), and MPC (u(t) depends on z(|t))

Often D = 0 is not a limiting assumption as

- often actuator dynamics must be considered (u is the set-point to a low-level

controller of the actuators)

- most physical models described by ordinary differential equations are strictly

causal, and so is the discrete-time version of the model

In case DD # (), we can assume a delay in executing the commanded u

Yr = CpTr + Dug_q
and treat u(t — 1) as an extra state

Mot an issue for unmeasured outputs
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