*
- e *
*

Model Predictive Control

s axlgs oBls JgnalS 5 (3 (owikins

&

a2

~

Data-driven MPC

set-points

r(t

)

measurements

optimization

algorithm

process

e Canwedesignan MPC controller without first identifying a model of the

-

o

pen-loop process?

s N
Data-driven direct controller synthesis @

By s
P
- - - -I
| : d |
i € u vol Y To Y
‘;_ZT_) Ky S : = —H M —
| 1
| i
M |
e Collect asetofdata {u(t),y(t).p(t)}.t=1,....N
e Specify a desired closed-loop linear model M fromr toy
« Computer,(t) = M*y(t) from pseudo-inverse model M¥* of M
Identify linear (LPV) model K, from e, = r,, — y (virtual tracking error) to u

[
N

s N
Data-driven MPC

e Designalinear MPC (reference governor) to generate the reference r :

Yo —— MPC

desired
reference

——— __
D
N
<
X
C3<—§ »
U
‘V\:

Linear prediction model
(totally known !)

19— MPC { 1 M l
| K,

e MPC designed to handle input/output constraints and improve performance

(- p

/

Data-driven MPC - An example

e Experimental results: MPC handles soft constraintsonu, Au and y

(motor equipment by courtesy of TU Delft)

0 u
4.5 T T T T 5 T T T T
T
with MPC _
4| without MPC || Z. 0
=
\ -5 1 | | 1 1
_ 35] 5 10 15 20 25 30
g A
= u
R | 0.5 — . . ;
25+ 1 E 0 m o . W
’ <
— _0.5 1 1 1 L L
2 : : : : 5 10 15 20 25 30

5 10 15 20 25 30 Time [s]

Time [s] . .
desired tracking constraints on |nput

performance achieved increments satisfied

@ No open-loop process model is identified to design the MPC controller!

L/

e N
{Optimal data-driven MPC 1 @

S

e Question: How to choose the reference model A4 ?

. d
¥ S L |
[] u ||_r” I
. : l P E
? ﬁ@ --------------------- .
-
&

e Canwe choose M from data so that K, is an optimal controller ?

(- p

/

Optimal data-driven MPC @

S

» ldea: parameterize desired closed-loop model M (#) and optimize

N-=1
_ 1 : 3 ars e : -
min J(0) == tz_ufji-y{r{ﬁ}—yp{ﬂ.,m +H-au;~m;{ﬂ+q+ Wi (u(t) — ul.{ﬁn:})i

.

Fer{nrmance_ tadex identification error

e Evaluating J(#) requires synthesizing K, (#) from data and simulating the
nominal model and control law

yp(0.t) = M(0)r(t) up(f, t) = Kp(0)(r(t) — ya(0.1))
Aup(f. 1) = up(f, 1) — up(f.1 — 1)

e Optimal # obtained by solving a (non-convex) nonlinear programming problem

L

~

/

Optimal data-driven MPC @

7 j b S
J"d"l‘/f‘.’i’?@"‘ ,K,,

e Results: linear process

[
I

> =104

G(z) = |

Data-driven controller only 1.3% worse than .
model-based LQR (=5YS-ID on same data + al

LOR design) R N

e Results: nonlinear (Wiener) process A e LT

yr(t) G(z)u(t)
y(t) = |yp(t)|arctan(y.(t))

B

The data-driven controller is 24% better than s}

\9 LOR based on identified open-loop mode| ! oA aa me w1 o u

/

Data-driven optimal policy search @

~ 5 e
5 7]
\-’r\;_,‘/f‘.lﬂ, el

e Plant + environment dynamics (unknown):

5¢ states of plant & environment
Sti1 =h{.‘:‘t.jit.ut.{itj .
- p; exogenous signal (e.g., reference)

- u; control input

- ; unmeasured disturbances

« Control policy: = : "= " — B"= deterministic control policy

iy = TT'[-‘*'rj'Jt}

e Closed-loop performance of an execution is defined as

Too (7, 50, {pes de}og) = ZP{-‘:‘E-FE- m(se, pe))

F=0

° plse.pe. w5, pg)) = stage cost

-~
Optimal Policy Search Problem @

S

* Optimal policy:
* = argmin, J(7)

jl:?l’:l = Eﬁ'n-{j:lr.d:} [J—_..;{'JT., 5 {pf.fif}}l] rir_'!.Fli:cl:i:-.i FET’EDI’I‘\"IE.HEE’.

* Simplifications:

- Finite parameterization: m = g (3, ps) with K = parameters to optimize
L—1

-
- Finite horizon: 7 (7, so, {p:.{f[},n;:;]l} = Z o{se, pe, w(5e, pe))
f={

e Optimal policy search: use stochastic gradient descent (SGD)

f‘h.rf — I':.Fg_]_ — ﬂtﬂ{firf_lj ‘
— ———

@ with D(K;_,) = descent direction

~

/

Descent Direction @

S

« The descent direction D(K,;_,) is computed by generating:
= N, perturbations ,-sfjﬂ around the current state s,
- N, random reference signals rf:f) of length L,

- Narandom disturbance signals dfﬂ of length L,
J'lirl- "nl"rj'.l ":.I"rq

‘I}[:I{t_l} = Z Z Z THJL{WR}_IJ 3:}”- {rf'j].‘dffk}]'] = -_:.- L

i=]1 j=1 k=1
5GD step = mini-batch of size M = N, - N, - N
= Computing V i 71 requires predicting the effect of m over L future steps

e We use a local linear model just for computing V i 71, obtained by running
recursive linear system identification

L

/

Optimal Policy Search Algorithm @

e Ateachstepf:

1. Acguire current s,
2. Recursively update the local linear model
3. Estimate the direction of descent DK, _)

4. Update policy: K; +— K;_1 — o, D{K;_1)

e |f policy is learned online and needs to be applied to the process:

= Compute the nearest policy Ay to A that stabilizes the local model
Ki = argmin||K — K{|]3

c.t. K stabilizes local linear model limear makrix inequaliby

e e When policy is learned online, exploration is guaranteed by the reference r;

A

/

Special Case: Output Tracking

® T = [Pei Pesdiiine s Womvgs: Whees by Wiy v s By |

Awuy = uy —u;_y controlinput increment

Stagecost: || yesr —7e 15, + | Aue Ik + || a1 112,

Integral actiondynamics q; .y = q; + (Y1 — 73)

Sp = . Dt — Tt
U

* Linear policy parametrization:

Trc(se, 1) ==K -5 — K7 -y, K= [

h" 5
KT

|

s N
Special Case: Output Tracking @

Gy i

—0.660 0.378 0.233 —(1.295
—0.288 —0.147 —0.638 | T3 = | —0.325 | 1y

T4l
+ —0.337 0.580 0.043 —0.258

model (8 wakiuown
y = [-1.139 0319 —0.571]z

Online tracking performance (no disturbance, d;, = 0):

4 - -
a |- — Il-Ji"I-.i.L:I.I
- i Qg =1
()
I” | : U iy L L
-7 - . 3 1)
J i Ny N, N,
| i | i . g &l 1 10
0 1 0000 20000 30000

/

{Special Case: Output Tracking 1 @

o

Evolution of the error || K; — K, ||

4

10000

1Ko = Kot [l
20000 30000

Time t

Ksep = [—1.255,0.218, 0.652, 0.895, 0.050, 1.115, —2.1586]

K,w = [=1.257,0.219, 0.653, 0.898,0.050, 1.141. —2.196]

/

Learning MPC from data @

¢ I '
O Pt L
/_,_‘”:‘. A6 [-all]

e Goal: learn MPC law from data that optimizes a given

e Reinforcement learning =use data and a performance index to
learn an optimal policy

e Q-learning: learn Q-function defining the MPC law from data

e Policy gradient methods: learn optimal policy coefficients directly from
data using stochastic gradient descent

e Global optimization methods: learn MPC parameters (weights, models,
horizon, solver tolerances, ...) by optimizing observed closed-loop
performance

~

[Learning MPC from data } @

[LR,
O fa 275 Wy

L

Model/ policy structure includes real plant/optimal policy:

— Sys-id + model-based synthesis = model-free reinforcement
learning

— Reinforcement learning may require more data

(model-based can instead “extrapolate” optimal actions)

Model/policy structure does not include real
plant/optimal policy:

— optimal policy learned from data may be better than model-
based optimal policy

— when open-loop model is used as a tuning parameter, learned
model can be quite different from best open-loop model that can
be identified from the same data

~

