کنترل پیش بین Model Predictive Control

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Data-driven MPC

 Can we design an MPC controller without first identifying a model of the open-loop process?

Data-driven direct controller synthesis

(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)

- Collect a set of data {u(t), y(t), p(t)}, t = 1, ..., N
- Specify a desired closed-loop linear model ${\mathcal M}$ from r to y
- Compute $r_v(t) = \mathcal{M}^{\#}y(t)$ from pseudo-inverse model $\mathcal{M}^{\#}$ of \mathcal{M}
- Identify linear (LPV) model K_p from $e_v = r_v y$ (virtual tracking error) to u

Data-driven MPC

• Design a linear MPC (reference governor) to generate the reference *r*

(Bemporad, Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994)

Linear prediction model (totally known!)

• MPC designed to handle input/output constraints and improve performance

Data-driven MPC - An example

• Experimental results: MPC handles soft constraints on u, Δu and y (motor equipment by courtesy of TU Delft)

desired tracking performance achieved

constraints on input increments satisfied

No open-loop process model is identified to design the MPC controller!

Optimal data-driven MPC

Question: How to choose the reference model M?

• Can we choose $\mathcal M$ from data so that K_p is an optimal controller?

Optimal data-driven MPC

Idea: parameterize desired closed-loop model M(θ) and optimize

$$\min_{\theta} J(\theta) = \frac{1}{N} \sum_{t=0}^{N-1} \underbrace{W_y(r(t) - y_p(\theta, t))^2 + W_{\Delta u} \Delta u_p^2(\theta, t)}_{\text{performance index}} + \underbrace{W_{\text{fit}}(u(t) - u_v(\theta, t))^2}_{\text{identification error}}$$

• Evaluating $J(\theta)$ requires synthesizing $K_p(\theta)$ from data and simulating the nominal model and control law

$$y_p(\theta, t) = \mathcal{M}(\theta)r(t)$$
 $u_p(\theta, t) = K_p(\theta)(r(t) - y_p(\theta, t))$

$$\Delta u_p(\theta, t) = u_p(\theta, t) - u_p(\theta, t - 1)$$

• Optimal θ obtained by solving a (non-convex) nonlinear programming problem

Optimal data-driven MPC

(Selvi, Piga, Bemporad, 2018)

· Results: linear process

$$G(z) = \frac{z - 0.4}{z^2 + 0.15z - 0.325}$$

Data-driven controller only 1.3% worse than model-based LQR (=SYS-ID on same data + LQR design)

Results: nonlinear (Wiener) process

$$y_L(t) = G(z)u(t)$$

 $y(t) = |y_L(t)| \arctan(y_L(t))$

The data-driven controller is 24% better than LQR based on identified open-loop model!

Data-driven optimal policy search

Plant + environment dynamics (unknown):

$$s_{t+1} = h(s_t, p_t, u_t, d_t)$$

- s_t states of plant & environment
- p_t exogenous signal (e.g., reference)
- u_t control input
- d_t unmeasured disturbances

• Control policy: $\pi: \mathbb{R}^{n_s+n_p} \longrightarrow \mathbb{R}^{n_u}$ deterministic control policy

$$u_t = \pi(s_t, p_t)$$

Closed-loop performance of an execution is defined as

$$\mathcal{J}_{\infty}(\pi, s_0, \{p_{\ell}, d_{\ell}\}_{\ell=0}^{\infty}) = \sum_{\ell=0}^{\infty} \rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell}))$$

$$\rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell})) = \text{stage cost}$$

Optimal Policy Search Problem

Optimal policy:

$$\pi^* = \arg\min_{\pi} \mathcal{J}(\pi)$$

$$\mathcal{J}(\pi) = \mathbb{E}_{s_0,\{p_\ell,d_\ell\}} \left[\mathcal{J}_{\infty}(\pi,s_0,\{p_\ell,d_\ell\}) \right]$$
 expected performance

Simplifications:

- Finite parameterization: $\pi = \pi_K(s_t, p_t)$ with K = parameters to optimize
- Finite horizon: $\mathcal{J}_L(\pi, s_0, \{p_\ell, d_\ell\}_{\ell=0}^{L-1}) = \sum_{\ell=0}^{L-1} \rho(s_\ell, p_\ell, \pi(s_\ell, p_\ell))$
- Optimal policy search: use stochastic gradient descent (SGD)

$$K_t \leftarrow K_{t-1} - \alpha_t \mathcal{D}(K_{t-1})$$

with $\mathcal{D}(K_{t-1})$ = descent direction

Descent Direction

- The descent direction $\mathcal{D}(K_{t-1})$ is computed by generating:
 - N_s perturbations $s_0^{(i)}$ around the current state s_t
 - N_r random reference signals $r_\ell^{(j)}$ of length L,
 - N_d random disturbance signals d_ℓ^(h) of length L,

$$\mathcal{D}(K_{t-1}) = \sum_{i=1}^{N_s} \sum_{j=1}^{N_p} \sum_{k=1}^{N_q} \nabla_K \mathcal{J}_L(\pi_{K_{t-1}}, s_0^{(i)}, \{r_\ell^{(j)}, d_\ell^{(k)}\})$$

SGD step = mini-batch of size
$$M = N_s \cdot N_r \cdot N_d$$

- Computing $\nabla_K \mathcal{J}_L$ requires predicting the effect of π over L future steps
- We use a local linear model just for computing ∇_KJ_L, obtained by running recursive linear system identification

Optimal Policy Search Algorithm

- At each step t:
 - Acquire current s_t
 - 2. Recursively update the local linear model
 - 3. Estimate the direction of descent $\mathcal{D}(K_{t-1})$
 - Update policy: K_t ← K_{t-1} − α_tD(K_{t-1})
- If policy is learned online and needs to be applied to the process:
 - Compute the nearest policy K^{*}_t to K_t that stabilizes the local model

$$K_t^\star = \underset{K}{\operatorname{argmin}} \|K - K_t^s\|_2^2$$
 s.t. K stabilizes local linear model linear matrix inequality

When policy is learned online, exploration is guaranteed by the reference r_t

Special Case: Output Tracking

- $x_t = [y_t, y_{t-1}, \dots, y_{t-n_o}, u_{t-1}, u_{t-2}, \dots, u_{t-n_i}]$ $\Delta u_t = u_t - u_{t-1} \quad \text{control input increment}$
- Stage cost: $\|y_{t+1} r_t\|_{Q_y}^2 + \|\Delta u_t\|_{R}^2 + \|q_{t+1}\|_{Q_q}^2$
- Integral action dynamics $q_{t+1} = q_t + (y_{t+1} r_t)$

$$s_t = \begin{bmatrix} x_t \\ q_t \end{bmatrix}, \quad p_t = r_t.$$

Linear policy parametrization:

$$\pi_K(s_t, r_t) = -K^s \cdot s_t - K^r \cdot r_t, \qquad K = \begin{bmatrix} K^s \\ K^r \end{bmatrix}$$

Special Case: Output Tracking

$$\begin{cases} x_{t+1} &= \begin{bmatrix} -0.669 & 0.378 & 0.233 \\ -0.288 & -0.147 & -0.638 \\ -0.337 & 0.589 & 0.043 \end{bmatrix} x_t + \begin{bmatrix} -0.295 \\ -0.325 \\ -0.258 \end{bmatrix} u_t \\ y_t &= \begin{bmatrix} -1.139 & 0.319 & -0.571 \end{bmatrix} x_t \end{cases}$$
 model is unknown

Online tracking performance (no disturbance, $d_t = 0$):

Special Case: Output Tracking

Evolution of the error $||K_t - K_{opt}||_2$:

 $K_{\text{SGD}} = [-1.255, 0.218, 0.652, 0.895, 0.050, 1.115, -2.186]$

$$K_{\text{opt}} = [-1.257, 0.219, 0.653, 0.898, 0.050, 1.141, -2.196]$$

Learning MPC from data

- Goal: learn MPC law from data that optimizes a given
- Reinforcement learning = use data and a performance index to learn an optimal policy
- Q-learning: learn Q-function defining the MPC law from data (Gros, Zanon, 2019) (Zanon, Gros, Bemporad, 2019)
- Policy gradient methods: learn optimal policy coefficients directly from data using stochastic gradient descent (Ferrarotti, Bemporad, 2019)
- Global optimization methods: learn MPC parameters (weights, models, horizon, solver tolerances, ...) by optimizing observed closed-loop performance (Piga, Forgione, Formentin, Bemporad, 2019) (Forgione, Piga, Bemporad, 2020)

Learning MPC from data

Model/policy structure **includes** real plant/optimal policy:

- Sys-id + model-based synthesis = model-free reinforcement learning
- Reinforcement learning may require more data
 (model-based can instead "extrapolate" optimal actions)

Model/policy structure **does not include** real plant/optimal policy:

- optimal policy learned from data may be better than model-based optimal policy
- when open-loop model is used as a tuning parameter, learned
 model can be quite different from best open-loop model that can be identified from the same data