کنترل پیش بین Model Predictive Control

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

NMPC: dynamics, constraints and cost function

Nonlinear models

Often nonlinear models are available in continuous time:

$$\dot{x} = f(x, u)$$

$$y = h(x, u)$$

■ For nonlinear MPC design, we need a discrete-time model:

$$x(k+1) = F(x(k), u(k))$$

$$y(k) = h(x(k), u(k))$$

For simplicity, we use the **notation**: $x^+ = f(x, u)$

Constraints and cost function

- **State and input** constraints: $x(k) \in X$, $u(k) \in U$
- Stage cost and overall cost: $V_{\mathbf{A}}(x, \mathbf{u}) = \sum_{j=0}^{N-1} I(x(j), u(j)) + V_{f}(x(N))$

MPC: optimal control problem and assumptions

Main assumptions

- $I(\cdot)$ and $V_f(\cdot)$ are **positive definite**, and I(0,0) = 0, $V_f(0) = 0$ $f(\cdot)$ is **continuous** and f(0,0) = 0
- Control-invariant set $X_f \subseteq X$: For any $x \in X_f$, there exists $u \in U$ such that: $V_f(f(x,u)) V_f(x) \le -I(x,u)$

Optimal control problem

Given the **current state** *x*, solve:

$$\mathbf{P}_{N}(x): \qquad \min_{\mathbf{u}} V_{N}(x, \mathbf{u}) \qquad \text{s.t.}$$

$$x^{+} = f(x, u)$$

$$x(j) \in \mathbf{X} \qquad \text{for all } j = 0, ..., N-1$$

$$u(j) \in \mathbf{U} \qquad \text{for all } j = 0, ..., N-1$$

$$x(N) \in \mathbf{X}_{f}$$

NMPC: a note on computational aspects

General aspects

- The OCP is a non-convex, nonlinear program:
 - Computing f(x, u) requires **ODE integration**
 - ► Finding **global optimum** is difficult
 - Solution algorithms are time consuming

Efficient NMPC methods [Diehl et al., 2008]

- Problem formulation aspects:
 - Sequential: eliminate the state sequence and solve for u
 - Simultaneous: solve for both state and input sequences (multiple shooting, collocation methods, etc.)
- NLP methods:
 - Sequential Quadratic Programming: repeated linearization of constraints and quadratic expansion of the cost function
 - Interior Point Methods: direct solution of the (slightly modified) nonlinear optimality KKT conditions

Summery: Choice of prediction model

Conclusions

- MPC is a universal control methodology:
 - different **models** (linear, nonlinear, hybrid, stochastic, ...)
 - optimize closed-loop performance subject to constraints
 - widely applicable to many industrial sectors
- MPC research:
 - 1. Linear, uncertain, explicit, hybrid, nonlinear MPC: mature theory
 - 2. Stochastic MPC, economic MPC: still open issues
 - 3. Embedded optimization methods for MPC: **still room for many new ideas**
 - 4. System identification for MPC: there is a lot to "learn" from machine learning
 - 5. Data-driven MPC: a lot of open issues.
- MPC technology: mature enough for widespread use in industrial applications

MPC research areas and researchers

Topic	Linear MPC	Nonlinear MPC
MPC formulations	Mayne, Rawlings, Limon, Lazar, Morari, Pannocchia	Magni, Scattolini, De Nico- lao, Grüne, Allgöwer, Find- eisen, Guay, Kouvaritakis, Hen- son
MPC stability and robust- ness	Lazar, Limon, Rossiter, Chisci, Kouvaritakis, Bemporad, Kerri- gan, Mayne, Rawlings, Pannoc- chia	Teel, Scattolini, Rawlings, Magni, De Nicolao, Lazar, Pannocchia
Fast MPC (online)	Kerrigan, Boyd, Diehl, Bem- porad, Zavala, Biegler, Morari, Jones, Jorgensen, Wright, Rawl- ings, Pannocchia	Diehl, Biegler, Wright, Rawlings, Bock, Findeisen
Fast MPC (explicit control laws)	Bemporad, Morari, Goodwin, Borrelli, Pistikopoulos, Moen- nigmann, Johansen, Rossiter	Pistikopoulos, Morari, Jones, Raimondo

MPC research areas and researchers

Topic	Linear MPC	Nonlinear MPC
Distributed (hierarchical, decentralized) MPC	Rawlings, Wright, Scattolini, Bemporad, Limon, Johansen, Casavola, Christofides, Cam- ponogara, De Schutter, Ferrari-	Rawlings, Wright, Allgöwer, Raimondo, Magni, Scattolini
Performance Monitoring	Trecate, Pannocchia Qin, Rawlings, Patwardhan, Shah, Huang, Seborg, Lee, Pannocchia	?
Constrained state estimation	Rawlings, Mayne, Lee, D	iehl, Bitmead, Goodwin
Identification and input design	Qin, Huang, Zhu, Ljung, Chiuso, Pannocchia	?
Applications	Process industries, Automotive, Aerospace, Finance, Robotics	Chemical processes, Biomedical, Robotics