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Model Predictive Control
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In most commercial product acronyms we find several
important keywords that define the MPC technologies

Control
Model
Predictive
Multivariable
Robustness
Constraints
Optimization

Identification
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[Models of Dynamic Systems J @

® Goal: Introduce mathematical models to be used in
Model Predictive Control (MPC) describing the behavior of

dynamic systems

* Model classification: state space/transfer function,
linear/nonlinear, time-varying/time-invariant,

continuous-time/discrete-time, deterministic/stochastic

® Ifnot stated differently, we use deterministic models
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[Models of Dynamic Systems J @

® Models of physical systems derived from first principles
are mainly: nonlinear, time-invariant, continuous-time,

state space models (1)

* Target models for standard MPC are mainly:
® linear, time-invariant, discrete-time, state space models (2)

® Focus of this section is on how to ’transtorm’ (1) to (2)
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Nonlinear, Time-Invariant, Continuous- @

Time, State Space Models

T = g(x,u)
y = h(x,u)
n  state vector .R" x B™ n system dynamics
reR glz,u) :R"xR™ - R
u € R™ input vector h(z,u) : R* x R™ — RP  oytput function

(&S R?  output vector

* Very general class of models
* Higher order ODEs can be easily brought to this form (next slide)

* Analysis and control synthesis generally hard —— linearization
to bring it to linear, time-invariant (LTI), continuous-time, state

space form
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[Nonlinear, Time-Invariant, Continuous- J @
Time, State Space Models
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. Equivalence of one n-th order ODE and n 1-st order ODEs
™ 4 Inl2, 8,7, .. .,az(”"l)) =0
* Define

mz'-l-lzx(i)? i:O,...,n—l

* Transformed system

:i‘]_ = I=
s = I3
In—1 = In
Iy = _gu{?rl-r‘jz -T.ra.}
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[Nonlinear, Time-Invariant, Continuous-
Time, State Space Models

. Example:

* Moment of inertia wrt. Rotational axis ML?

* Torque caused by external force T
* Torque caused by gravity MgL sin(6)

Mgl
& 0.8

* System equation ML’ =T — MgL sin(6) oo
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it =A%+ Bu
y = Cr+ Du

r € R" state vector

u € R™ input vector

y € RP output vector

* Vast theory exists for the analysis and control synthesis of linear

systems

* Exact solution: . t
o(t) = et t0) g —|—f e (=T Bu(7)dr

tny
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[LTI Continuous-Time State Space Models} @
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° Problem: Most physical systems are nonlinear but linear systems

are much better understood

* Nonlinear systems can be well approximated by a linear system in a

‘'small’ neighborhood around a point in state space

* Idea: Control keeps the system around some operating point—>

replace nonlinear by a linearized system around operating point

* First order Taylor expansion of f( ) around x,(#) and ¥, (?)
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[LTI Continuous-Time State Space Models} @

* Definition: Ax, =X, — X, Ar, =1, —r,

l

( h ( )
) a0 =3 L ac |[+3| L ar |+
J=1 ox J |Xo J J=1 or J |Xo J
\ *rO J *\ ry Y,
AX=A AXx+B Ar
o o 9 S G
ox, oOx,  ox, or, or or,
o o o N R R A
A" = ox, ox,  Ox, B =l on o or,
o, o, 9, Yo % 2
or, Or, or

ox, Ox,  Ox P |Xo
@ \“M 2 n) :o r
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Linearization

* The linearized system is written in terms of deviation

variables Ax,Au,Ay

* [ inearized system is only a good approximation for

'small’ Ax, Au

* Subsequently, instead of Ax, Au, Ay,x, uand y are used
for brevity
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LTI Continuous-Time State Space Models @

B 7

ANANAVANAN

. Example: [inearization of pendulum equations

. X, X,
5€=L.Cj= —gsin(x1)+ T |= —gsin(xl)Jru = g(x,u)

L M L
y :xl - h(x,u)
* Want to keep the pendulum around =z = (7/4,0)" — u, = §sin(7/4)
ac= 2 ; L) pe_99) _ |0
e r=z, —2cos(m/4) 0 u' r=az, 1
dh dh
M P T [
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Nonlinear, Time-Invariant, Discrete- @

Time, State Space Models
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* Nonlinear discrete-time systems are described by difference equations

z(k+1) = g(z(k), u(k))
y(k) = h(z(k), u(k))
r € R"™  state vector glz,u) : R" x R™ — R"™ system dynamics

ue R™ input vector hiz,u): R" x R™ — RP output function
y € RF  output vector
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LTI Discrete-Time, State Space Models @
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* Linear discrete-time systems are described by linear difference

equations r(k+1) = Az(k) + Bu(k)
y(k) = Cr(k) + Du(k)

* Inputs and outputs of a discrete-time system are defined only at

discrete time points, i.e. its inputs and outputs are sequences defined
for keZ”

* Discrete time systems describe either
1. Inherently discrete systems, eg. bank savings account balance at
the kth month  z(k+ 1) = (1 + a)z(k) + u(k)

2. ’Transformed’ continuous-time system
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* Vast majority of controlled systems not inherently discrete-time

systems
* Controllers almost always implemented using microprocessors

* Finite Computation time must be considered in the control system

design—> discretize the continuous-time system

* Discretization is the procedure of obtaining an ’equivalent’ discrete-

time system from a continuous-time system

* The discrete-time model describes the state of the continuous-time

system only at particular instances
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[Discrete—Time Model

We will use:

> Nonlinear Discrete Time

y(k)

Jd  Discretization Methods

1. Euler Discretization

2. /Z.OH Discretization

o

(k+1) = glz(k
y(k) = h(a(k

» or LTI Discrete Time
r(k+ 1) Az(k) + Bu(k)
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Theorem: Asymptotic Stability of Linear Systems

The LTI system

z(k+1) = Az(k)

is globally asymptotically stable

lim z(k) = 0,Yz(0) € R

k— oo

if and only if [\;] < 1, Vi=1,--- . n where A; are the eigenvalues of A. '

lfor cont., time LTI systems & = Az, the conditions is Re(X;:) < 0
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Discrete-Time Model Stability @

d We consider first the stability of a nonlinear, time-

invariant, discrete-time system
Try1 = g(k) (1)

with an equilibrium point at O

Definition: Lyapunov function

Consider the equilibrium point z = () of system (1). Let £ C ™ be a closed and
bounded set containing the origin. A function V : R®™ — R, continuous at the

origin, finite for every = € (2, and such that

V(0) =0 and V(z) >0, Yz € Q\ {0}
V(g(zx)) — V(a) < —a(zx) Yz € 2\ {0}

where a : R" — R is continuous positive definite,

@ is called a Lyapunov function.
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Lyapunov theorem

Theorem: Lyapunov stability (asymptotic stability)

If a system (1) admits a Lyapunov function V(z), then z = 0 is asymptotically
stable in (1.

Theorem: Lyapunov stability (global asymptotic stability)

If a system (1) admits a Lyapunov function V/(z) that additionally satisfies
||| = 00 = V(z) = oo,

then = = 0 is globally asymptotically stable.




Discrete-Time Model Stability @
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Remarks:

J Note that the Lyapunov theorems only provide sufficient
conditions

d Lyapunov theory is a powerful concept for proving stability of
a control system, but for general nonlinear systems it is
usually difficult to find a Lyapunov function

d Lyapunov functions can sometimes be derived from physical
considerations

D One common approach:
dDecide on form of Lyapunov function (e.g., quadratic)
d Search for parameter values e.g. via optimization so that the required
properties hold
A For linear systems there exist constructive theoretical results

on the existence of a quadratic Lyapunov function




