کنترل پیش بین Model Predictive Control

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Keywords

- In most commercial product acronyms we find several important keywords that define the MPC technologies
- Control
- Model
- Predictive
- Multivariable
- Robustness
- Constraints
- Optimization
- Identification

Models of Dynamic Systems

- **Goal:** Introduce **mathematical models** to be used in Model Predictive Control (MPC) describing the **behavior** of dynamic systems
- **Model classification:** state space/transfer function, linear/nonlinear, time-varying/time-invariant, continuous-time/discrete-time, deterministic/stochastic
- If not stated differently, we use deterministic models

Models of Dynamic Systems

- Models of physical systems derived from first principles are mainly: nonlinear, time-invariant, continuous-time, state space models (1)
- Target models for standard MPC are mainly:
- linear, time-invariant, discrete-time, state space models (2)
- Focus of this section is on how to 'transform' (1) to (2)

Nonlinear, Time-Invariant, Continuous-Time, State Space Models

$$\begin{split} \dot{x} &= g(x, u) \\ y &= h(x, u) \\ x \in \mathbb{R}^n \quad \text{state vector} \quad \begin{array}{l} y &= h(x, u) \\ g(x, u) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \quad \text{system dynamics} \\ h(x, u) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p \quad \text{output function} \\ y \in \mathbb{R}^p \quad \text{output vector} \end{split}$$

- Very general class of models
- Higher order ODEs can be easily brought to this form (next slide)

Nonlinear, Time-Invariant, Continuous-Time, State Space Models

$$x^{(n)} + g_n(x, \dot{x}, \ddot{x}, \dots, x^{(n-1)}) = 0$$

• Define

$$x_{i+1} = x^{(i)}, \quad i = 0, \dots, n-1$$

• Transformed system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = x_3$$

$$\vdots \qquad \vdots$$

$$\dot{x}_{n-1} = x_n$$

$$\dot{x}_n = -g_n(x_1, x_2, \dots, x_n)$$

6

LTI Continuous-Time State Space Models

- $\dot{x} = A^{c}x + B^{c}u$ y = Cx + Du $x \in \mathbb{R}^{n} \text{ state vector}$
- $u \in \mathbb{R}^m$ input vector

 $y \in \mathbb{R}^p$ output vector

- Vast theory exists for the analysis and control synthesis of linear systems
- Exact solution:

$$x(t) = e^{A^{c}(t-t_{0})}x_{0} + \int_{t_{0}}^{t} e^{A^{c}(t-\tau)}Bu(\tau)d\tau$$

LTI Continuous-Time State Space Models

Linearization

- The linearized system is written in terms of deviation variables $\Delta x, \Delta u, \Delta y$
- Linearized system is only a good approximation for 'small' Δx, Δu
- Subsequently, instead of $\Delta x, \Delta u, \Delta y, x$, u and y are used for brevity

• Want to keep the pendulum around $x_s = (\pi/4, 0)' \rightarrow u_s = \frac{g}{l} \sin(\pi/4)$

$$\begin{aligned} A^{c} &= \left. \frac{\partial g}{\partial x'} \right|_{\substack{x=x_s \\ u=u_s}} = \left[\begin{array}{cc} 0 & 1 \\ -\frac{g}{l}\cos(\pi/4) & 0 \end{array} \right], \quad B^{c} = \left. \frac{\partial g}{\partial u'} \right|_{\substack{x=x_s \\ u=u_s}} = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \end{aligned}$$
$$C &= \left. \frac{\partial h}{\partial x'} \right|_{\substack{x=x_s \\ u=u_s}} = \left[1 \quad 0 \right], \quad D = \left. \frac{\partial h}{\partial u'} \right|_{\substack{x=x_s \\ u=u_s}} = 0 \end{aligned}$$

Nonlinear, Time-Invariant, Discrete-Time, State Space Models

• Nonlinear discrete-time systems are described by difference equations

$$\begin{aligned} x(k+1) &= g(x(k), u(k)) \\ y(k) &= h(x(k), u(k)) \end{aligned}$$

$x \in \mathbb{R}^n$	state vector	$g(x, u) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$	system dynamics
$u \in \mathbb{R}^m$	input vector	$h(x, u) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$	output function
$y \in \mathbb{R}^p$	output vector		

LTI Discrete-Time, State Space Models

• Linear discrete-time systems are described by linear difference equations x(k+1) = Ax(k) + Bu(k)

$$y(k) = Cx(k) + Du(k)$$

- Inputs and outputs of a discrete-time system are defined only at discrete time points, i.e. its inputs and outputs are sequences defined for $k \in \mathbb{Z}^+$
- Discrete time systems describe either
 - 1. Inherently discrete systems, e.g. bank savings account balance at the kth month $x(k+1) = (1+\alpha)x(k) + u(k)$
 - 2. 'Transformed' continuous-time system

Discrete-Time Model

We will use:

Nonlinear Discrete Time

$$\begin{array}{rcl} x(k+1) &=& g(x(k), u(k)) \\ y(k) &=& h(x(k), u(k)) \end{array}$$

or LTI Discrete Time

 $\begin{array}{rcl} x(k+1) &=& Ax(k)+Bu(k)\\ y(k) &=& Cx(k)+Du(k) \end{array}$

- Discretization Methods
 - 1. Euler Discretization
 - 2. ZOH Discretization

Discrete-Time Model Stability

Theorem: Asymptotic Stability of Linear Systems

The LTI system

$$x(k+1) = Ax(k)$$

is globally asymptotically stable

$$\lim_{k \to \infty} x(k) = 0, \forall x(0) \in \mathbb{R}^n$$

if and only if $|\lambda_i| < 1$, $\forall i = 1, \dots, n$ where λ_i are the eigenvalues of A.¹

¹for cont., time LTI systems $\dot{x} = Ax$, the conditions is $Re(\lambda_i) < 0$

Discrete-Time Model Stability

Lyapunov theorem

Theorem: Lyapunov stability (asymptotic stability)

If a system (1) admits a Lyapunov function V(x), then x = 0 is asymptotically stable in Ω .

Theorem: Lyapunov stability (global asymptotic stability)

If a system (1) admits a Lyapunov function V(x) that additionally satisfies

 $||x|| \to \infty \Rightarrow V(x) \to \infty,$

then x = 0 is globally asymptotically stable.

Discrete-Time Model Stability

Remarks:

- Note that the Lyapunov theorems only provide sufficient conditions
- Lyapunov theory is a powerful concept for proving stability of a control system, but for general nonlinear systems it is usually difficult to find a Lyapunov function
- Lyapunov functions can sometimes be derived from physical considerations
- One common approach:
 - Decide on form of Lyapunov function (e.g., quadratic)
 - □ Search for parameter values e.g. via optimization so that the required properties hold
- □ For linear systems there exist constructive theoretical results on the existence of a **quadratic Lyapunov function**