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 In most commercial product acronyms we find several 
important keywords that  define the MPC technologies

 Control  

 Model  

 Predictive 

 Multivariable  

 Robustness  

 Constraints  

 Optimization  

 Identification

Keywords
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 Goal: Introduce mathematical models to be used in

Model Predictive Control (MPC) describing the behavior of
dynamic systems

 Model classification: state space/transfer function, 

linear/nonlinear,  time-varying/time-invariant, 

continuous-time/discrete-time,  deterministic/stochastic

 If not  stated  differently,  we  use  deterministic models

Models of Dynamic Systems
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 Models of physical systems derived from first principles

are mainly: nonlinear, time-invariant, continuous-time,

state space models (1)

 Target models for standard MPC are mainly:

 linear,  time-invariant,  discrete-time, state space  models (2)

 Focus of this section  is  on  how  to  ’transform’  (1)  to (2)

Models of Dynamic Systems
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Nonlinear, Time-Invariant, Continuous-
Time, State Space Models
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state vector system dynamics

input vector output function

output vector

• Very general class of models

• Higher order ODEs can be easily brought to this form (next slide)

• Analysis and control synthesis generally hard linearization

to bring it to linear, time-invariant (LTI), continuous-time, state 

space form



Nonlinear, Time-Invariant, Continuous-
Time, State Space Models
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• Equivalence of one n-th order ODE and n 1-st order ODEs

• Define

• Transformed system



Nonlinear, Time-Invariant, Continuous-
Time, State Space Models
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• Example: Pendulum

• Moment of inertia wrt. Rotational axis  ML2

• Torque caused by external force T

• Torque caused by gravity  

•

• System equation

• Using
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LTI Continuous-Time State Space Models 
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state vector

input vector

output vector

• Vast theory exists for the analysis and control synthesis of linear 

systems

• Exact solution:   



LTI Continuous-Time State Space Models 
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• Problem: Most physical systems are nonlinear but linear systems 

are much  better understood

• Nonlinear systems can be well approximated by a linear system in a 

’small’  neighborhood around a point in state space

• Idea: Control keeps the system around some operating point  

replace nonlinear by a linearized system around operating point

• First order Taylor expansion of f( ) around  and )(0 tx
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LTI Continuous-Time State Space Models 
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• Definition:    iii xxx 0
iii rrr 0
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LTI Continuous-Time State Space Models 
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Linearization

• The linearized system is written in terms of deviation 

variables

• Linearized system is only a good approximation for 

’small’ 

• Subsequently, instead of                 ,x, u and y are used 

for brevity

, ,x u y  

,x u 

, ,x u y  



LTI Continuous-Time State Space Models 
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• Example: Linearization of pendulum equations

• Want to keep the pendulum around 
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Nonlinear, Time-Invariant, Discrete-
Time, State Space Models
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• Nonlinear discrete-time systems are described by difference equations



LTI Discrete-Time, State Space Models
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• Linear discrete-time systems are described by linear difference 

equations

• Inputs and outputs of a discrete-time system are defined onIy at 

discrete time  points, i.e. its inputs and outputs are sequences defined 

for 

• Discrete time systems describe either

1. Inherently discrete systems, eg. bank savings account balance at 

the kth month 

2. ’Transformed’ continuous-time system

k 



LTI Discrete-Time, State Space Models
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• Vast majority of controlled systems not inherently discrete-time 

systems

• Controllers almost always implemented using microprocessors

• Finite computation time must be considered in the control system 

design          discretize the continuous-time system

• Discretization is the procedure of obtaining an ’equivalent’ discrete-

time  system from a continuous-time system

• The discrete-time model describes the state of the continuous-time 

system only at particular instances



Discrete-Time Model
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We will use:

 Nonlinear Discrete Time

 or LTI Discrete Time

 Discretization Methods

1. Euler Discretization

2. ZOH Discretization 



Discrete-Time Model Stability
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 We consider first the stability of a nonlinear, time-

invariant, discrete-time  system

with  an  equilibrium  point  at  0

Discrete-Time Model Stability
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Lyapunov theorem

Discrete-Time Model Stability
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Remarks:
Note that the Lyapunov theorems only provide sufficient 

conditions
Lyapunov theory is a powerful concept for proving stability of 

a control  system, but for general nonlinear systems it is 
usually difficult to find a  Lyapunov function

Lyapunov functions can sometimes be derived from physical 
considerations

One common approach:
Decide on form of Lyapunov function (e.g., quadratic)
 Search for parameter values e.g. via optimization so that the required  

properties hold

 For linear systems there exist constructive theoretical results 
on the existence  of a quadratic Lyapunov function

Discrete-Time Model Stability 
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