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In all but the simplest cases, an analytical solution to,

cannot be obtained.

Numerical computation of a solution that is “good enough” by
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Important aspects of optimization algorithms:

Convergence: is kmax finite for every ?

Convergence speed: dependence of errors f ( ) − f (z*) and
dist( , S)on iteration counter

Feasibility: for some methods , but in general

Numerical robustness in presence of finite precision arithmetics

Warm-starting: can the method take advantage of z0 being close
to z*?

Preconditioning: equivalence transformation of (P) into a
similar problem(P’) that can be solved in fewer iterations?
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Unconstrained Optimization Using Gradient Information 
[Cauchy 1847]

Goal: Solve the unconstrained (i.e. S = Rn) problem

where f : Rn→ R is convex and continuously differentiable.

Idea: Gradient ∇f gives direction of steepest local ascent

⇒ Make steps of size hk into anti-gradient direction −∇f :
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Unconstrained Optimization
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Convex set
Definition:
A set S ⊆Rn is convex if for all x1, x2 ∈S

λx1 + (1 − λ)x2 ∈S, ∀λ ∈[0,1]

convexset
nonconvex set



Unconstrained Optimization
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Convex Function 
Definition:

f : S → R is a convex function if S is convex
and

f (λx1 + (1 −λ)x2) ≤ λf (x1) + (1 −λ)f(x2)

∀x1, x2  ∈S, λ ∈[0,1]
Jensen’s
inequality



Aspects of Gradient Methods for unconstrained optimization

Convergence: is kmax finite for every ? (globally)

Convergence speed: dependence of errors f ( ) − f (z*) and
dist( , S)on iteration counter (globally)

Numerical robustness in presence of finite precision arithmetics

Warm-starting: can the method take advantage of z0 being close
to z*? 

Preconditioning: equivalence transformation of (P) into a similar
problem(P’) that can be solved in fewer iterations? 

Each iteration computationally cheap (matrix-vector
multiplication for QPs)

Unconstrained Optimization
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Newton’s Method

 Idea: Minimize second-order approximation of f at point zk

Since second-order approximation of f  is not an upper bound on f 
, full Newton step does not necessarily yield descent

Unconstrained Optimization
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 Idea: Use step size hk>0 such that Newton step yields descent

 Line search (LS) methods:

Unconstrained Optimization
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Aspects of Newton’s Methods for unconstrained optimization

 Convergence: is kmax finite for every             ?   (globally with line 
search)

Convergence speed: dependence of errors f ( ) − f (z*) and dist( ,
S)on iteration counter (locally quadratically converging)

Numerical robustness in presence of finite precision arithmetics 

Warm-starting: can the method take advantage of z0 being close to z*?


Preconditioning: equivalence transformation of (P) into a similar
problem(P’) that can be solved in fewer iterations? No

Each iteration computationally expensive (requires solving a system of
linear equations)

Unconstrained Optimization
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Constrained Optimization
Gradient Methods

Interior Point Methods

Active Set Methods

Constrained Optimization
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Consider the following constrained convex optimization problem: 

where S is convex and is convex 
The problem has several ingredients:

The vector    z collects the decision variables (optimization variables)

 objective function

We can solve the unconstrained problem  S ≡ Rn efficiently by the 
gradient method

Question: How to handle constraints?

Constrained Optimization
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A useful Reformulation of the Gradient update

Unconstrained case: Gradient update results from minimizing
a quadratic function:

Constrained case: Incorporate constraints in minimization: 

where πS is a projection: 

Constrained Optimization
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 Interior Point Methods
Consider the following problem with inequality constraints

 f , gi convex, twice continuously differentiable

We assume f (z*) is finite and attained

We assume problem is strictly feasible: there exists a with

Idea: There exist many methods for unconstrained minimization
⇒ Reformulate problem as an unconstrained problem 

Constrained Optimization
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 Graphical ilustration
Define function as ∞ if constraints violated.

Minimize this function over Rn

Constrained Optimization
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Constrained Optimization
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Constrained Optimization
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Constrained Optimization
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Constrained Optimization
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Constrained Optimization
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Constrained Optimization
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Constrained Optimization

23



 YALMIP MATLAB-based modeling language

 CVX (CVXPY) Modeling language for convex problems in ( MATLAB

, )

 CASADI + IPOPT Nonlinear modeling + automatic differentiation, nonlinear
programming solver (MATLAB, ,C++)

 Optimization Toolbox’ modeling language (part of MATLAB since
R2017b)

 PYOMO -based modeling language

 PuLP An linear programming modeler for

 GAMS (www.gams.com): commercial high-level modeling system for  

large-scale optimization. Supports many different types of problems 

(LPs,  QCQPs, MILPs, MINLPs, ...) and solvers

Modeling languages for optimization 
problems
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A simple optimization problem: 

The YALMIP toolbox for Matlab (from ETH / Linkoping):
%make variables

sdpvar x1 x2;

%define cost function

f = abs(x1 + 6) + abs(x2 - 4);

%define constraints

X = set(3 <= x1 <= 5) + ...

set( -2 <= x2 <= 2);

%solve

solvesdp(X,f);

Solving optimization problems
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A simple optimization problem: 

The CVX toolbox for Matlab (from Stanford):
cvx_begin

variables x1 x2 % define variables

%define cost function and constraints

minimize(abs(x1 + 6) + abs(x2 - 4))

subject to

3 <= x1 <= 5

-2 <= x2 <= 2

cvx _end %solves automatically

Solving optimization problems
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