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Introduction @

In all but the simplest cases, an analytical solution to,

z e argminf (z)
st. ze§

cannot be obtained.

J Numerical computation of a solution that is “good enough” by

Iterative optimization methods:

Given an initial guess 2", produce a sequence of iterates

2 b 18], B0,
such that

f(Fme=) — (%) <€ and dist(zkm, S) <5,

@ where € and & are user defined tolerances.
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Important aspects of optimization algorithms:

[ Convergence: is k ___finite for every §,&>0?

3 Convergence speed: dependence of errors f (z*) — f (") and

dist( #=, S)on iteration counter
[ Feasibility: for some methods§ =0, but in general o #0
(J Numerical robustness in presence of finite precision arithmetics

EIWarm—starting: can the method take advantage of 7¥ being close

to 2 ?

[ Preconditioning: equivalence transtormation of (P) into a

L

similar problem(P") that can be solved in fewer iterations?
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Unconstrained Optimization Using Gradient Information

[Cauchy 1847]

[ Goal: Solve the unconstrained (i.e. S = R") problem

min f (x)
where f : R™— R is convex and continuously differentiable.
dIdea: Gradient Vf gives direction of steepest local ascent

= Make steps of size h¥ into anti—gradient direction — VT :

= 28— REVF(2F)

(- p
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[Unconstrained Optimization

Convex set

Definition:
Aset S €R" is convex if forall xi, X, €S

Axi+ (1 —A)x; &5, VA 40,1]
convex set

nonconvex set
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Convex Function
Definition:
f : S — Risaconvex function if Sis convex

FOAX + (1 =A)x2) SAFG) + (1 =A)F(x2)
bx1, X2 &S, A §0,1]

Jensen’s

inequality
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Aspects of Gradient Methods for unconstrained optimization
0 Convergence: is k,_ finite for every 6,6 >0 2 v'(globally)

d Convergence speed: dependence of errors f (z*= ) — f (z") and
dist(z “*, S)on iteration counter v’ (globally)

(J Numerical robustness in presence of finite precision arithmetics

EIWarm—starting: can the method take advantage of 7Y being close
toz? v

[ Preconditioning: equivalence transtormation of (P) into a similar
problem(P’) that can be solved in fewer iterations? v*

dEach  iteration  computationally  cheap  (matrix-vector

multiplication for QPs)
L
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Newton’s Method

d Idea: Minimize second-order approximation of { at point zK
2" = argmin f(2F) + VF(2F) T (z — 25) + %(z — IV (%) (2 - 2F)
V. (£ + VI = )+ 5= TR - )
& V(5 + V(R = 2%) =0

&M=t (V) ViEY

n

Newton direction dy(2¥)

=0

z=zk+1

Since second-order approximation of f is not an upper bound on f

, full Newton step does not necessarily yield descent

o
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= Idea: Use step size h >0 such that Newton step yields descent
ZFTl =k pF (ng(zk))_l V(5

= Line search (LS) methods:

m Exact: Compute best h*:

h*" = argmin f(2* + h*dy(2%))
h>0
Optimization in 1 variable — solve by bisection
Time consuming (requires many evaluations of f)

m /nexact: Find h* that decreases f by some per cent. Example:
Backtracking' line search. For a € (0, 0.5) and 3 € (0, 1):
Initialize h* = 1.

@ while f(2* + h¥dy(2%) > F(2%) + ah*Vf(2")Tdn(2") do h* « Bh*
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Aspects of Newton’s Methods for unconstrained optimization

O Convergence: is k,,_finite for every 9,&>0? v/(globally with line
search)

[ Convergence speed: dependence of errors f (z “my — f (77) and dist( z "

b

S)on iteration counter ¥ (locally quadratically converging)
] Numerical robustness in presence of finite precision arithmetics v

d Warm-starting: can the method take advantage of 7Y being close to z*7?

v

[ Preconditioning: equivalence transformation of (P) into a similar
problem(P”) that can be solved in fewer iterations? No

[ Each iteration computationally expensive (requires solving a system of

linear equations)
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JConstrained Optimization
(dGradient Methods
Interior Point Methods
JActive Set Methods
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Consider the following constrained convex optimization problem:

min f (z)

subjectto zeS
where S is convex and /(%) is convex

The problem has several ingredients:
dThe vector  z collects the decision variables (optimization variables)
df (z) R" >R objective function

J We can solve the unconstrained problem S=R" efficiently by the
gradient method

J Question: How to handle constraints?

o
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A usetful Reformulation of the Gradient update

L Unconstrained case: Gradient update results from minimizing

a quadratic function:
L = 2F _ hFV (2R

d Constrained case: Incorporate constraints in minimization:

2" = 7 (2 = BFVF(29)

where T, is a projection:
1

ms(y) = argmin ||z — y|;

st.ze S

o
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» Interior Point Methods

Consider the following problem with inequality constraints
min f(z)
y g.(2)<0,i=1,,m

df, g, convex, twice continuously differentiable

' We assume f(z”) is finite and attained

d'We assume problem is strictly feasible: there exists a Z with

ze domf, g¢:(2)<0,i=1,....m

JIdea: There exist many methods for unconstrained minimization
= Reformulate problem as an unconstrained problem

o
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> Graphical 1lustration

Define function as o© if constraints violated.

Minimize this function over R»
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Constrained Optimization

Barrier Method

min  f(z)

st. gilz)<0,i=1,....m & min f(z) + pe(z)

Constraints have been moved to objective via indicator function:

TrL

¢(z) = I(g:(2), p=1
=1

where /_(u) =0 if u < 0 and I_ = oc otherwise

m Augmented cost is not differentiable

—+ approximation by logarithmic barrier:

d(z) =—) log(—gi(2))

i=1

m For i > () smooth approximation of
indicator function

-2 —1 1)

—n
2 : . —3
@ = Appmmmatlﬂn IMproves as ft —» () T
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Logarithmic Barrier Function

m

&)= = log(~gi(2)), dom ¢ ={z] () <O,..., gm(2) < 0}

=1

m Convex, smooth on its domain
m ¢&(z) — o0 as z approaches boundary of domain

m arg min: ¢ z) is called analytic center of the set defined by inequalities
g1 < ﬂ,....gm < ()

m Twice continuously differentiable with derivatives

e

1
Vé(z) =) =5 Vail2)

i=1
TR o D S SRS S N
V() ;yimj 9:(2)V9:(2) " + —=Vai(2)
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Central Path

m Define z* () as the solution of
min f(z) + p(z)

(assume minimizer exists and is unique for each p > 0)
m Barrier parameter i determines relative weight between objective and barrier
m Barrier 'traps’ z(u) in strictly feasible set
m Central path is defined as {z*(u) | 4 > 0}
e

For given i can compute z* () by solving smooth unconstrained
minimization problem

m Intuitively z* () converges to optimal solution as ¢ — 0
(easy to prove under mild conditions)
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Example: Central Path for an LP

z € B2, ¢ points upward

g = 1000 = 1/100

QQQO
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Path-following Method

Idea: Follow central path to the optimal solution

Solve sequence of smooth unconstrained problems:

2 L) = ﬂrgmgllﬂz] + pd(z)

m Assume current solution is on the central path 2" = z* (")
m Obtain ;' by decreasing 1" by some amount
m Solve for z*(u**?!) starting from z*(p') (unconstrained optimization)

m Method converges to the optimal solution, i.e., 22 forpu—0
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Consider
min flz)
subj. to z € S,

where the feasible set S C R is a polyhedron, i.e. a set defined by linear equalities
and inequalities, and the objective f is a linear function (linear programming (LP))
or a convex quadratic function (quadratic programming (QP)).

m Active set methods aim to identify the set of active constraints at the
solution. Once this set is known, a solution to the problem can be easily
identified.

m Since the number of potentially visited active sets depends combinatorially on
the number of decision variables and constraints, these methods have a worst
case complexity that is exponential in the problem size (as opposed to
first-order and interior point methods). However, active set methods have

e proved to work quite well in practice.
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Active Set for LPs

min .. ¢z (3)
subj. to Gz < w

m Central to active set methods for LP is the observation that a solution is
always attained at a vertex of the polyhedral feasible set.

m A simple strategy would be to enumerate all vertices of the polyhedron and
declare the vertex with the smallest cost as solution.

m However, one can do better by only visiting those vertices that improve the
cost at the previous ones.

m T his is the main idea behind active set methods for LP.
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problems .
> MATLAB-based modeling language
> Modeling language for convex problems in ( MATLAB
,@ python )
> Nonlinear modeling + automatic differentiation, nonlinear
programming solver (MATLAB, @ puthon  C++)
> ’modeling language (part of MATLAB since
R2017b)
> @ puthon -based modeling language
> An linear programming modeler for & python

(www.gams.com): commercial high-level modeling system for
large-scale optimization. Supports many different types of problems
(LPs, QCQPs, MILPs, MINLPs, ...) and solvers

(- p
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Solving optimization problems

A simple optimization problem:

min ‘xl +6‘—|—‘x2 —4‘

x eR

st 3<x,<5, —-2<x,<2
The YALMIP toolbox for Matlab (from ETH / Linkoping):
sdpvar x1 x2;

f = abs(x1 + 6) + abs(x2 - 4);

X =set(3 <=x1<=5)+ ..
set( -2 <=x2 <= 2);

solvesdp(X,f);

L
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Solving optimization problems

A simple optimization problem:

Imnhl+d+h2—4

x eR

st 3<x,<5, —-2<x,<2

The CVX toolbox for Matlab (from Stanford):

cvx_begin

variables x1 x2

minimize(abs(x1 + 6) + abs(x2 - 4))
subject to

3<=x1<=5

2 <=x2<=2

cvx _end

o




