كنترل پيش بين **Model Predictive Control**

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Numerical Optimization Methods

- **<u>Introduction</u>**
- **QU**nconstrained Optimization
	- **O**Gradient Methods
	- Newton's Method
- Constrained Optimization
	- **O**Gradient Methods
	- **OInterior Point Methods**
	- Active Set Methods
- **O**Software
	- Modeling languages for optimization problems

Introduction

In all but the simplest cases, an analytical solution to,

$$
z^* \in \operatorname{argmin} f(z)
$$

$$
s \, t. \quad z \in S
$$

cannot be obtained.

Numerical computation of a solution that is "good enough" by

Iterative optimization methods:

Given an initial guess z^0 , produce a sequence of iterates

$$
z^{k+1} = \Psi(z^k, f, S), \quad k = 0, 1, \dots, k_{max}
$$

such that

$$
|f(z^{k_{max}}) - f(z^*)| \le \epsilon \quad \text{and} \quad \text{dist}(z^{k_{max}}, S) \le \delta,
$$

where ϵ and δ are user defined tolerances.

Introduction

Important aspects of optimization algorithms:

- Convergence: is k_{max} finite for every δ , $\varepsilon > 0$?
- **□** Convergence speed: dependence of errors $f(z^{k_{max}}) f(z^*)$ and $dist({}_Z\,k_{\text{max}}}, \text{S})$ on iteration counter
- **Q** Feasibility: for some methods $\delta = 0$, but in general $\delta \neq 0$
- Numerical robustness in presence of finite precision arithmetics
- Warm-starting: can the method take advantage of z^0 being close to z^* ?
- Preconditioning: equivalence transformation of (P) into a similar problem(P') that can be solved in fewer iterations?

Unconstrained Optimization Using Gradient Information [**Cauchy 1847**]

Goal: Solve the unconstrained (i.e. $S = R^n$) problem $\min_{x} f_o(x)$ $f_{o}(x)$

where $f: R^n \to R$ is **convex** and continuously differentiable. Idea: Gradient ∇f gives direction of steepest local ascent \Rightarrow Make steps of size h^k into anti-gradient direction $-\nabla f$:

$$
z^{k+1} = z^k - h^k \nabla f(z^k)
$$

Convex set Definition: A set *S* \subseteq Rⁿ is **convex** if for all $x_1, x_2 \in$ S

convexset

nonconvex set

Convex Function

Definition:

 $f : S \rightarrow R$ is a **convex function** if S is convex

$$
f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)
$$

 \forall *<i>x*₁, *x*₂ ∈*S*, *λ* ∈[0,1]

Jensen's inequality

Aspects of Gradient Methods for unconstrained optimization

- Convergence: is k_{max} finite for every $\delta, \varepsilon > 0$? \checkmark (globally)
- **□** Convergence speed: dependence of errors f ($z^{k_{max}}$) f (z^{*}) and dist(^{*z* k_{max}}, S)on iteration counter ✔ (globally)
- Numerical robustness in presence of finite precision arithmetics
- Warm-starting: can the method take advantage of z^0 being close to z^* ? \checkmark
- \Box Preconditioning: equivalence transformation of (P) into a similar problem(P') that can be solved in fewer iterations? \checkmark
- Each iteration computationally cheap (matrix-vector multiplication for QPs)

Newton's Method

 \Box Idea: Minimize second-order approximation of f at point z^k

$$
z^{k+1} = \arg\min_{z} f(z^k) + \nabla f(z^k)^T (z - z^k) + \frac{1}{2} (z - z^k)^T \nabla^2 f(z^k) (z - z^k)
$$

$$
\nabla_z \left(f(z^k) + \nabla f(z^k)^T (z - z^k) + \frac{1}{2} (z - z^k)^T \nabla^2 f(z^k) (z - z^k) \right) \Big|_{z = z^{k+1}} = 0
$$

$$
\Leftrightarrow \nabla f(z^k) + \nabla^2 f(z^k) (z^{k+1} - z^k) = 0
$$

$$
\Leftrightarrow z^{k+1} = z^k - \left(\nabla^2 f(z^k) \right)^{-1} \nabla f(z^k)
$$

Newton direction $d_N(z^k)$

Since second-order approximation of f is not an upper bound on f , full Newton step does not necessarily yield descent

Aspects of **Newton's Methods** for unconstrained optimization

- **Q** Convergence: is k_{max} finite for every $\delta, \varepsilon > 0$? \checkmark (globally with line search)
- Convergence speed: dependence of errors $f(z^{k_{max}}) f(z^*)$ and dist($z^{k_{max}}$, S)on iteration counter $\bar{\checkmark}$ (locally quadratically converging)
- \Box Numerical robustness in presence of finite precision arithmetics \checkmark
- Warm-starting: can the method take advantage of z^0 being close to z^* ? \checkmark
- Preconditioning: equivalence transformation of (P) into a similar problem(P') that can be solved in fewer iterations? No
- Each iteration computationally expensive (requires solving a system of linear equations)

OConstrained Optimization **O**Gradient Methods

Interior Point Methods

Active Set Methods

Consider the following constrained convex optimization problem: $\min_{z} f_o(z)$ $f^{\vphantom{\dagger}}_o(z$

subject to $z \in S$

where *S* is convex and $f_o(z)$ is convex The problem has several ingredients:

 \Box The vector z collects the decision variables (optimization variables)

 $\Box f_o(z)$ $\mathbb{R}^n \to \mathbb{R}$ objective function

■ We can solve the unconstrained problem $S \equiv R^n$ efficiently by the gradient method

Question: How to handle constraints?

A useful Reformulation of the Gradient update

Unconstrained case: Gradient update results from minimizing a quadratic function:

$$
z^{k+1} = z^k - h^k \nabla f(z^k)
$$

Constrained case: Incorporate constraints in minimization:

$$
z^{k+1} = \pi_S(z^k - h^k \nabla f(z^k))
$$

where π_s is a **projection**:

$$
\pi_S(y) \triangleq \arg\min_{z} \frac{1}{2} ||z - y||_2^2
$$

s.t. $z \in S$

14

Interior Point Methods

Consider the following problem with inequality constraints

 $\min f(z)$ $s.t \quad g_i(z) \leq 0, i = 1, \dots, m$ *z* $f(z$

 $\Box f$, g_i convex, twice continuously differentiable We assume $f(z^*)$ is finite and attained \square We assume problem is strictly feasible: there exists a \tilde{z} with $\tilde{z} \in \text{ dom } f, \quad g_i(\tilde{z}) < 0, i = 1, \ldots, m$

Idea: There exist many methods for unconstrained minimization ⇒ Reformulate problem as an unconstrained problem

Graphical ilustration

Define function as ∞ if constraints violated.

Minimize this function over $Rⁿ$

Barrier Method

min $f(z)$ min $f(z) + \mu \phi(z)$ s.t. $g_i(z) \leq 0, i = 1, ..., m$

Constraints have been moved to objective via indicator function:

$$
\phi(z) = \sum_{i=1}^{m} I_{-}(g_{i}(z)), \quad \mu = 1
$$

where $I_-(u) = 0$ if $u \le 0$ and $I_- = \infty$ otherwise

Augmented cost is not differentiable \rightarrow approximation by logarithmic barrier:

$$
\phi(z) = -\sum_{i=1}^{m} \log(-g_i(z))
$$

For $\mu > 0$ smooth approximation of indicator function

Approximation improves as $\mu \to 0$

 17

Logarithmic Barrier Function

$$
\phi(z) = -\sum_{i=1}^{m} \log(-g_i(z)), \quad \text{dom } \phi = \{z \mid g_1(z) < 0, \dots, g_m(z) < 0\}
$$

- Convex, smooth on its domain
- \bullet $\phi(z) \rightarrow \infty$ as z approaches boundary of domain
- arg $\min_z \phi(z)$ is called analytic center of the set defined by inequalities $g_1 < 0, \ldots, g_m < 0$
- **T** Twice continuously differentiable with derivatives

$$
\nabla \phi(z) = \sum_{i=1}^{m} \frac{1}{-g_i(z)} \nabla g_i(z)
$$

$$
\nabla^2 \phi(z) = \sum_{i=1}^{m} \frac{1}{g_i(z)^2} \nabla g_i(z) \nabla g_i(z)^T + \frac{1}{-g_i(z)} \nabla^2 g_i(z)
$$

Central Path

n Define $z^*(\mu)$ as the solution of

```
\min_{z} f(z) + \mu \phi(z)
```
(assume minimizer exists and is unique for each $\mu > 0$)

- **Barrier parameter** μ determines relative weight between objective and barrier
- **Barrier** 'traps' $z(\mu)$ in strictly feasible set
- **E** Central path is defined as $\{z^*(\mu) | \mu > 0\}$
- **n** For given μ can compute $z^*(\mu)$ by solving smooth unconstrained minimization problem
- **n** Intuitively $z^*(\mu)$ converges to optimal solution as $\mu \to 0$ (easy to prove under mild conditions)

Example: Central Path for an LP

$$
\begin{array}{ll}\n\min & c^T z \\
\text{s.t.} & a_i^T z \le b_i, i = 1, \dots, 6\n\end{array}
$$

 $z \in \mathbb{R}^2$, c points upward

Path-following Method

Idea: Follow central path to the optimal solution

Solve sequence of smooth unconstrained problems:

 $z^*(\mu) = \arg\min f(z) + \mu \phi(z)$

Assume current solution is on the central path $z^i = z^*(\mu^i)$

- **D** Obtain μ^{i+1} by decreasing μ^i by some amount
- **B** Solve for $z^*(\mu^{i+1})$ starting from $z^*(\mu^i)$ (unconstrained optimization)
- **Method** converges to the optimal solution, i.e., $z^i \rightarrow z^*$ for $\mu \rightarrow 0$

Active Set Idea

Consider

 \min_z $f(z)$ subj. to $z \in S$,

where the feasible set $S \subset \mathbb{R}^s$ is a polyhedron, i.e. a set defined by linear equalities and inequalities, and the objective f is a linear function (linear programming (LP)) or a convex quadratic function (quadratic programming (QP)).

- Active set methods aim to identify the set of active constraints at the solution. Once this set is known, a solution to the problem can be easily identified.
- Since the number of potentially visited active sets depends combinatorially on the number of decision variables and constraints, these methods have a worst case complexity that is exponential in the problem size (as opposed to first-order and interior point methods). However, active set methods have proved to work quite well in practice.

Active Set for LPs

- \blacksquare Central to active set methods for LP is the observation that a solution is always attained at a vertex of the polyhedral feasible set.
- A simple strategy would be to enumerate all vertices of the polyhedron and declare the vertex with the smallest cost as solution.
- However, one can do better by only visiting those vertices that improve the cost at the previous ones.
- \blacksquare This is the main idea behind active set methods for LP.

Modeling languages for optimization

plems

- **YALMIP** MATLAB-based modeling language
- **CVX (CVXPY)** Modeling language for convex problems in (MATLAB , \rightarrow puthon
- **CASADI + IPOPT** Nonlinear modeling + automatic differentiation, nonlinear programming solver (MATLAB, \bullet python $,C++$)
- **Optimization Toolbox**' modeling language (part of MATLAB since R2017b)
- **PYOMO P** python -based modeling language
- **PuLP** An linear programming modeler for **P** python
- **GAMS** (www.gams.com): commercial high-level modeling system for large-scale optimization. Supports many different types of problems (LPs, QCQPs, MILPs, MINLPs, ...) and solvers

Solving optimization problems

A simple optimization problem:

$$
\min_{x \in R} |x_1 + 6| + |x_2 - 4|
$$

s.t $3 \le x_1 \le 5, -2 \le x_2 \le 2$

The **YALMIP toolbox** for Matlab (from ETH / Linkoping):

%make variables sdpvar x1 x2; %define cost function $f = abs(x1 + 6) + abs(x2 - 4);$ %define constraints $X = set(3 \le x1 \le 5) + ...$ set($-2 \le x2 \le 2$); $\%$ solve solvesdp(X,f);

25

Solving optimization problems

A simple optimization problem:

$$
\min_{x \in R} |x_1 + 6| + |x_2 - 4|
$$

s.t $3 \le x_1 \le 5, -2 \le x_2 \le 2$

The **CVX toolbox** for Matlab (from Stanford):

cvx_begin variables x1 x2 % define variables %define cost function and constraints minimize($abs(x1 + 6) + abs(x2 - 4)$) subject to $3 \le x1 \le 5$ $-2 \le x2 \le 2$ cvx _end %solves automatically