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d Discrete-time optimal control is concerned with choosing an optimal
input sequence U,  =|u, u ] (as measured by some objective
function),over a finite or infinite time horizon, in order to apply it to

a system with a given initial state x(0).

[ The objective, or cost function is often defined as a sum of stage costs

q(xy,uy) and, when the horizon has finite length N, a terminal cost

P(n) Jos (20, Uosn) £ plan) + Y qlaw, ur)

k=0
. The states {Xk} must satisfy the system dynamics

T4l = T, ), E=0,... . N =1
g = z(0)
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and there may be state and/or input constraints
h(x,,u,)<0, k=0,...,N-1.

[ In the finite horizon case, there may also be a constraint that the final
state xy lies in a set X
Xy €X,

dA general finite horizon optimal control formulation for discrete-

time systems is therefore

Jo_ n(2(0)) £ min Jo,n(z(0), Up—n)

Up—sw

subject to  zk41 = g(ap, ur), k=0,..., N-1
bz, ug) <0, k=0,....,N—1
Ty € (]f}

@ zo = z(0)
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General Problem Formulation

[ Consider the nonlinear time-invariant system
x(t+ 1) = g(x(?),u(?)),

subject to the constraints h(x(),u(t))<0,Vt=>0

Consider the following objective or cost function

N-1
JO—)N(x09U0—>N) = p(xN) +ZQ(xkauk)

=0
where

= N s the time horizon,
s X, =g(x,u)k=1 ... ,N=1 and x,=x(0)

" q(xy, u) and p(xy) are the stage cost and terminal cost, respectively

L
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General Problem Formulation
J Consider the Constrained Finite Time Optimal Control (CFTOC)

problem. Jon(20) = ming, ,,  Josn(z0, Uon)
subj. to  xp+1 = g(xp,ug), k=0,...,N -1
h(zp,u,) <0, k=0,...,N -1
N € Xf
Ip = I(U)

= X SR isa terminal region,

" Yon S R" tois the set of feasible initial conditions x(0)
= the optimal cost J; ,, (x,) is called value function,

= assume that there exists a minimum

= denote by Uy oy (xo) one of the minima

L
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Objectives

 Solution.
1. ageneral nonlinear programming problem (batch approach),

2. recursively by invoking Bellman’s Principle of Optimality
(recursive approach).

. Infinite horizon. We will investigate if
1. asolution exists as N — 00,
2. the properties of this solution.

3. approximation of the solution by using a receding horizon

L

technique :
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Solution via Batch Approach. NLP formulation

Write the equality constraints from system constraints as

1 = g(z(0), up)
12 = g(71, 1)

ry = g(Tn—1,UN=1)
then the optimal control problem is a general Non Linear Programming

(NLP) problem

. . N—1
Jﬂ—}N(m) — MmNy, plzn) + Ek:ﬂ q( Tk, ug)
subj. to  m = g(, up)
12 = g(z1, 1)

TN = g(rN—1, Un—-1)
h(zg, up) <0, k=0

Ty € r:t.;f
°
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Solution via Recursive Approach

Principle of optimality

For a trajectory xy. zf....,} to be optimal, the trajectory starting from any
intermediate point gf, i€ T Tl ... Zh, 0SS N —1, must be optimal.

Define the cost from j to N

also called the j-step cost-to-go. Then the optimal cost-to-go J;—m' 5

JJLN{:L}} = Ml . uves JioN (T W Wiy - - s UN—1)
subj. to Tpr1 = glop, u), k=3,...,N -1
Rl up) <0 b=ioayN—1
TN € AXf

° Note that .J, (z;) depends only on the initial state z;.
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Solution via Recursive Approach

By the principle of optimality the cost "r;—1 _,n can be found by solving

stage cost optimal cost—to—go
& . - & iy i * 9
Jj—l—m{-’fj—l} = 11:31111 q(zj—1, uj—1) + Jj—&N(Ij}
"
subj. to  z; = g(xj—1, uj—1) (1)
h(zj_y1,ui—1) <0
zj € XjN-
Note that
m the only decision variable is u;_,
m the inputs u7. ..., uy_, have already been selected optimally to yield the

optimal cost-to-go J", y(z;).

min JI, n(z), the state z; can be replaced by g(zj—1, uj—1)

m The set &, is the set of states z; for which (1) is feasible. We will study
these sets later in this class.

J
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> Solution via Recursive Approach

The following (recursive) dynamic programming algorithm can be

used to compute the optimal control law.

’r;._;.ml-ﬂﬂ"l = p(zn)
XN_N = A,
Ty 1_34{1;» 1) = iﬂill g(zy—1,un—1) + J;-_,N[ﬂliiw—hﬂw—ill
N—1
subj. to  hlzy_1.uy_1) <0,
g(zn—1,un—1) € Xnsn
Jo— n (7o) = HE,H q( 2o, up) + ff_,,;.,‘,'l:yl[ up))
subj. to  h(xg. ug) <

(o € Xl—}h

~
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Consider only linear discrete-time time-invariant systems

x(k+ 1) = Ax(k) + Bu(k)

and quadratlc cost functions
J,(x,,U,) = x, Px,, +Z [x,0Ox, +u, Ru,] (2)

are considered, and we consider only the problem of regulating the
state to the origin, without state or input constraints.

The two most common solution approaches will be described here

= Batch Approach, which yields a series of numerical values for the
input

= Recursive Approach, which uses Dynamic Programming to compute

control policies or laws, i.e. functions that describe how the control
decisions depend on the system states.

{: p
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Unconstrained Finite Horizon Control Problem

m Goal: Find a sequence of inputs Uy = [uy, ..., 'y _,]" that minimizes the
objective function

N—1
Jy(z(0)) = min  zy Pry + Z [z, Qi + g, Ruy
Vo k=0
subject to . = Az + Bug, k=0,..., N -1

z9 = z(0)

m P =0, with P= P’ is the terminal weight
m Q= 0, with @ = (), is the state weight

m R~ 0, with R= R, is the input weight

m N is the horizon length

m Note that x(0) is the current state, whereas 1y, ..., zy and ug, ..., uy_, are
optimization variables that are constrained to obey the system dynamics and
the initial condition.

7 5 . g b
J"d"l‘/f‘.’i’?@"‘ ,K,,
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Batch Approach

m [he problem is unconstrained

m Setting the gradient to zero:
Ui (z(0)) = Kz(0)
m which implies
u*(0)(x(0)) = Koz(0),...,u™(N = 1)(x(0)) = Kn_12(0)

which is a linear, open-loop controller function of the initial state x(0).

m [he optimal cost is

Jy (2(0)) = z(0) Pyz(0)

which is a positive definite quadratic function of the initial state z(0).

o
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Batch Approach

m The batch solution explicitly represents all future states x;. in terms of initial
condition x5 and inputs wug, ..., uy_1.

m Starting with x5 = x(0), we have 1, = Ax(0) + Bug, and
1y = Az + Buy = A%2(0) + ABug + Buy, by substitution for z;, and so on.
Continuing up to ) we obtain:

Ip I i 0 0 i
I A B 0 0 uy
. _ _E{m n AB B 0

; z 3 -0 z
o AN | ANTIB . AB B || .,

m [he equation above can be represented as

X 2 S72(0) + S"Up . (3)
(-,
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Batch Approach

m Define

Q £ blockdiag(Q.....Q.P) and R £ blockdiag(R....,R)

Then the finite horizon cost function (2) can be written as
Jo(z(0), Uy) = X' QX + U/RU,. (4)
m Eliminating X" by substituting from (3), equation (4) can be expressed as:

Jo(2(0), Up) = (S2(0) + S* Up) O(S%x(0) + S Up) + Uy'R U
— Uy’ HUy + 22(0) FUy + 2(0)'S* 0S*z(0)

where H £ S*' QS" + R and F £ 8% QS™.
m Note that H = 0, since R > 0 and S* QS* = (.

o
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Batch Approach

m Since the problem is unconstrained and Jy(z(0), Uy) is a positive definite
quadratic function of Uy we can solve for the optimal input U by setting the
gradient with respect to [/ to zero:

Vv, Jo(z(0), Up) = 2HUy + 2F'z(0) = 0
= Up (2(0)) = —H'F'z(0)
= _{Suré(su + ﬁ}—lsu;@smr{ﬂj -.

which is a linear function of the initial state x((0).
Note H~! always exists, since H = ) and therefore has full rank.

m The optimal cost can be shown (by back-substitution) to be

JE(2(0)) = —z(0) FHF 2(0) + z(0)'S* 0S®z(0)
= 2(0)(S* QS* — S™ QS“(S¥ QS" + R)~'8* Q8%)x(0),
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Batch Approach

Summary

m The Batch Approach expresses the cost function in terms of the initial state
x(0) and input sequence Uy by eliminating the states x.

m Because the cost Jy(x(0), Uy) is a strictly convex quadratic function of U,
its minimizer U7 is unique and can be found by setting
Vv, Jo(z(0), Up) = 0. This gives the optimal input sequence U as a linear
function of the intial state x(0):

Ug (2(0)) = —(S* QS™ + R)~'8* QS z(0)
m The optimal cost is a quadratic function of the initial state x(0)
JE(2(0)) = 2(0)(S* QS* — 8* QS™(S* QS™ + R)~18* QS*)z(0)

m If there are state or input constraints, solving this problem by matrix
@ inversion is not guaranteed to result in a feasible input sequence
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Recursive Approach

m Alternatively, we can use dynamic programming to solve the same problem in
a recursive manner.

m Define the "j-step optimal cost-to-go” as the optimal cost attainable for the
step j problem:

N—1
®f o0y L : S . ey /
i (2(j)) = ujﬁl_ll%lial;_l zy Pry + Z[:}k Qi + uy Ruy
k=j
subject to xpy g = Az + Bu, k=34,... . N -1

r; = x(j)

This is the minimum cost attainable for the remainder of the horizon after
step 7

(- p
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Recursive Approach
m Consider the 1-step problem (solved at time N — 1)
Jy_1(zy—1) =min{zy_, Qry_1 + uy_Ruy_1 + zyPnzn}  (5)
UN—1
subject to xy = Axzn_1 + Buy_1 (6)
Py=P

where we introduced the notation P; to express the optimal cost-to-go
z; Pjz;. In particular, Py = P.

m Substituting (6) into (5)
J;r_l(.'?fﬁ_l} = :ill{:ﬂ;.‘.-_l(flfPNA + Q}IN_]_

+ le-.,‘r_]_l[B’PNB + R}H-N_j_
+2I:-.J_1AfPNBTLN_1}
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Recursive Approach

m Solving again by setting the gradient to zero leads to the following optimality
condition for up_1

2(B'PyB+ R)uy_1+2B'PyAzy_1 =0
Optimal 1-step input:
up_1=—(B'PyB+ R)"'B'PyAzn_y
= Fn_12Zn-1

1-step cost-to-go:
* !
Tn—1(en-1) = 2y  PN—12N -1,

where
Py_1=APyA+ Q- APyB(B'PyB+ R)"'B'PyA.
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Recursive Approach

m The recursive solution method used from here relies on Bellman's Principle
of Optimality

m For any solution for steps () to N to be optimal, any solution for steps j to N
with j > 0, taken from the () to N solution, must itself be optimal for the
j-to-NN problem

m Therefore we have, forany j=0,....N
.I;{:::j] = Ililén{,f;‘ﬂ(s:jﬂ} + _1:; Qz; + H;Ruj}
s.1. :Bj-l-l = .c":l.'il':.]. - BT,I!.j

B Suppose that the fastest route from Los Angeles to Boston passes through Chicago. Then
the principle of optimality formalizes the obvious fact that the Chicago to Boston portion
of the route is also the fastest route for a trip that starts from Chicago and ends in Boston.

o
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Recursive Approach
m Now consider the 2-step problem, posed at time N — 2

N—1
Jy_s(zy_2) = min { E 1. Qry, + uy Ruy, + :::Ji,P:::N}

Upy_q.Uy_2
' k=N—2

st. @ =Ax. +Bu,, k=N-2,N-1
m From the Principle of Optimality, the cost function is equivalent to
Jy_o(zy_2) =min{Jy_i(zn_1)
UN—2
+ Tn_oQrn—_2 + up_oRun_2}

= min{zy_, Pn_1Zy_,
UN—2

+ In—2 QIN_Q + 'LL:;-.‘.-_ERHN_E}
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Recursive Approach

m As with 1-step solution, solve by setting the gradient with respect to uy_o to
zero

Optimal 2-step input

H;.:’—E’ = —[:B’PN_IB + R)_J'BJPN_IAIN_E

= Fn_2ZN—2
2-step cost-to-go

Jyn_a(zn_2) = zy_oPn_2zNn_2,
where

Py_o=APy_1A+ Q- A'Py_1B(B'Py_1B4+ R)"'B'Py_,A

@ m We now recognize the recursion for P; and u;, j=N-—=1,---,0.
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Recursive Approach

m We can obtain the solution for any given time step k in the horizon

u*(k) = —(B'Pjy1B+ R)™'B'Piy Ax(k)
< Frz(k) fork=1,....N

where we can find any P, by recursive evaluation from Py = P, using
P.=APr1A4+ Q- A'Pr1B(B'PraiB+ R)"'B' P A (7)

This is called the Discrete Time Riccati Equation or Riccati Difference
Equation (RDE).

m Evaluating down to Py, we obtain the N-step cost-to-go

Jg (2(0)) = z(0) Poz(0)
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Recursive Approach

Summary

m From the Principle of Optimality, the optimal control policy for any step j is
then given by

u*(k) = =(B'Pry1 B+ R 'B' Ppy Az(k) = Frz(k)
and the optimal cost-to-go is
Jo(z(k)) = 2 Prz(k)
m Each P, is related to P, by the Riccati Difference Equation
Pp=APr1A+ Q— A Prs1B(B' Pry1B+ R)™'B' P A,

which can be initialized with Py = P, the given terminal weight

o
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Comparison of Batch and Recursive Approaches

m Fundamental difference: Batch optimization returns a sequence Uj(z(0)) of
numeric values depending only on the initial state x((), while dynamic
programming yields feedback policies u* (k) = Frxz(k), k=0,...,N -1
depending on each x(k).

m If the state evolves exactly as modelled, then the sequences of control actions
obtained from the two approaches are identical.

m [he recursive solution should be more robust to disturbances and model
errors, because if the future states later deviate from their predicted values,
the exact optimal input can still be computed.

m [he Recursive Approach is computationally more attractive because it breaks
the problem down into single-step problems. For large horizon length, the
Hessian H in the Batch Approach, which must be inverted, becomes very

large.

(- p
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Comparison of Batch and Recursive Approaches

= Without any modification, both solution methods will break down

when inequality constraints on x, or u, are added.

= The Batch Approach is far easier to adapt than the Recursive
Approach when constraints are present: just perform a constrained

minimization for the current state.

= Doing this at every time step within the time available, and then
using only the first input from the resulting sequence, amounts to

receding horizon control.
ding h trol
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