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{Receding horizon control

"'“;;*"‘/'.. 177

Objectives Model Constraints

Reference | Optimizer | |nput Output
—> B > Plant ——
T Measurements
[ Do | Plan
Plan
F Plan
Time
>

e Receding horizon strategy introduces feedback.
8
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Receding horizon control
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Compute optimal sequence over N-step horzon
N

. u*(xy) ;= argmin Z x| Qx; + u! Ru;
=i
st x4 = Ax; + Buy;

)
Extract first input in
Sequence

For unconstrained systems, this is a constant linear controller
G However, can extend this concept to much more complex systems (MPC)




Example - Impact of Horizon Length @

Consider the lightly damped, stable system

w?

52 4 2ws + w?

G(s)

where w =1, ( =0.01. We sample at 10Hz and set P=Q =1/ R=1.

Discrete-time state-space model: Closed-loop response
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[Example: Short horizon N=5
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° Short honzon: Prediction and closed-loop response differ.
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[Example: Short horizon N=5

Py
15l _ i=1

1l

0.5}

= Of
_D_S-
-1} ‘o

—1 5t .. o

EE

‘ Short hornizon: Prediction and closed-loop response differ.




-~

[Example: Short horizon N=5
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Short horizon: Prediction and closed-loop response differ.
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[Example: Short horizon N=5

Short honzon: Prediction and closed-loop response differ.




Short honzon: Prediction and closed-loop response differ.
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[Example: Short horizon N=5
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Short horizon: Prediction and closed-loop response differ.
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[Example: Long horizon N=20
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Long horizon: Prediction and closed-loop match.
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[Example: Long horizon N=20
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Long horizon: Prediction and closed-loop match.
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[Example: Long horizon N=20
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Long horizon: Prediction and closed-loop match.
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Infinite Horizon Control Problem: Optimal Solution

= |n some cases we may want to solve the same problem with an

infinite horizon: > ;
deal2{ll)] = H'l(il)l Z[Iﬂ Q. + uy Rug]|
7 k=0
subject to 7141 = Az + Bux, k=0,1,2,...,00,
79 = z(0)

= As with the Dynamic Programming approach, the optimal input is of

the form.
u*(k) = —(B'Pxx B+ R)™'B'Poo Az(k) £ Fooz(k)

and the infinite-horizon cost-to-go is.

o

Joo(z(k)) = z(k) Pocz(k) .

[Linear Quadratic Optimal Control } @
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Linear Quadratic Optimal Control @

Infinite Horizon Control Problem: Optimal Solution

= The matrix P comes from an infinite recursion of the RDE, from a point
infinitely far into the future.

= Assuming the RDE does converge to some constant matrix P, it must
satisty the following (from (7), with P, =P, ,, = P,)
Po=AP A+ Q- AP _B(BP.,B+R)"'B'P, A,

which is called the Algebraic Riccati Equation (ARE).

= The constant feedback matrix F is referred to as the asymptotic form of
the Linear Quadratic Regulator (LQR).

= In fact, it (A, B) is controllable and (Q, A) is observable, then the RDE

(initialized with Q at k = 00 and solved for k 0) converges to the unique
positive definite solution P_, of the ARE

o
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{Linear Quadratic Optimal Control } @
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Stability of Infinite-Horizon LQR

In addition, the closed-loop system with u(k) = F_x(k) is guaranteed
to be asymptotically stable, under the stabilizability and detectability

assumptions of the previous slide.

The latter statement can be proven by substituting the control law
u(k) = F x(k) into x(k + 1) = A x(k) + B u(k), and then examining
the properties of the system

z(k+1) = (A+ BF,)z(k). (8)

The asymptotic stability of (8) can be proven by showing that the infinite
horizon cost J* (z(k)) = z(k)' Pox(k) is actually a Lyapunov function for
the system, i.e. J%X (z(k)) >0, Yk #0, JZ(0) =0, and

JX(z(k+1)) < JX (z(k)), for any z(k). This implies that

\




-~

{ Optimal Control

[ Optimal Control
[ Linear Quadratic Optimal Control

(] Constrained Linear Optimal Control

J Problem formulation
(] Feasible Sets

[ Constrained Optimal Control: 2-Norm

[ Constrained Optimal Control: 1-Norm and o0-Norm

o




: I
Constrained Linear Optimal Control @
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Constrained Linear Optimal Control

Cost function
N—-1

Jo(z(0), Up) = plzn) + Z gl uy)
k k=0
. Up 2 [t .., uy ]

m Squared Euclidian norm: p(zy) = z), Pry and g(z, ui) = rp Qry + up Ry

mp=1orp=oa plzy) = ||Pry|, and gz, u) = || Q|| + || Buge|| -

Constrained Finite Time Optimal Control problem (CFTOC)

Jo(x(0)) = ming, Jo(z(0), Up)
subj. to =z = Axe + Bug, k=0,...,N -1
I;l.Ea:'tr. -ukEH._k=ﬂ“..._N—l {g]
I = r-'t}
g = z(0)

N is the time horizon and A, I{, Ay are polyhedral regions.

L y




-~

Constrained Linear Optimal Control @
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Feasible Sets

Set of initial states x(0) for which the optimal control problem (9) is feasible:

Ao = {1 € R"| Iuy,..., tp_q) such that z, € X, u, € U,
k=0,...,N -1, zy € A, where 5, = Az, + Bu}

In general A} is the set of states x; at time i for which (9) is feasible:

X;= {z; € R"| I(uy,....uy_,) such that z, € X, u, €U,
k=i ....N—1, oy € Xy, where z, ., = Az, + Bu;},

The sets X; for i = 0,..., N play an important role in the the solution of the
CFTOC problem. They are independent of the cost.

\
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{ Optimal Control

[ Optimal Control

[ Linear Quadratic Optimal Control

[ Constrained Linear Optimal Control

[ Constrained Optimal Control: 2-Norm

 Problem Formulation
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[ Constrained Optimal Control: 1-Norm and 00-Norm
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Constrained Optimal Control: 2-Norm @
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Problem Formulation

Quadratic cost function

N—1
Jo(z(0), Up) = zy Prn + Y 2 Qi + uj Ruy (10)
k=0)
with P=0, Q =0, R>=0.
Constrained Finite Time Optimal Control problem (CFTOC).

Jy(z(0)) = min Jo(z(0), Ug)
'
subj. to Tpy = A + Buy, k=0,... , N-1
weX, ueld, k=0,....N—1 (11)
In € .e'"t}
zy = (0)

N is the time horizon and &X', I{, Ay are polyhedral regions.

© y
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Construction of the QP with substitution

m Step 1: Rewrite the cost as (see previous slides)

Jo(z(0), Up) = UgH Uy + 22(0)' F Uy + =(0) Yz(0)
= [Up z(0)] [§ T ] [Uo" =(0))
m Step 2: Rewrite the constraints compactly as (details provided on the next

slide)
Go Up < uwp + Eyz(0)

m Step 3: Rewrite the optimal control problem as

J3(x(0) = min (U5 2(0)] [§ £] 0" (0)]

subj. to Go Uy < ug + FEox(0)




-~

[Constrained Optimal Control: 2-Norm J @

Construction of the QP with substitution

Solution

L

- ), . ":;’."
\J,-d,‘l/: 217 ¢ a&‘)

J3(2(0) =min  [U5 2(0)][# 5] [Uo” 2(0)

subj. to  Gglp < uy + FEyx(0)

For a given x(0) [; can be found via a QP solver.

~
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Constrained Optimal Control: 2-Norm

Construction of the QP with substitution

If X', I{ and X} are given by:

X ={z|Az < b;}

Then (7, Ey and uy are defined as follows

0 Ay
0 0
E?n — ﬂ D
A.B 0
44:;’15 aqr.B
AsANTIB A AYRB

AsB

0
0

—
]

=2 8 a

U={u|Ayu<b,}

—AzA

__.-_1_1;.2

—A f AN

Uy =

&

& R
b 227
"”d'“'/'..)-."”u" a%‘)
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Constrained Optimal Control: 2-Norm @
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Construction of the QP without substitution
To obtain the QP problem

Jy (2(0)) = min [Ug z(0)] [f ‘E;] [Uo" z(0)]

Uy

subj. to  GygUp < wy + Eyz(0)
we have substituted the state equations
Tp+1 = Az + Buy

into the state constraints . € X.

It is often more efficient to keep the explicit equality constraints.
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Constrained Optimal Control: 2-Norm @
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Construction of the QP without substitution
We transform the CFTOC problem into the QP problem

J3(z(0)) = min [2" 2(0)'] [ﬁ g] [z z(0)
Sllbj. to t-lj:"vi.'].iu‘E E: Wy in + E’ﬂlu‘r(nj
Gﬂ_f_qz = ‘E[]L"Ll-r(ﬂj

m Define variable:

z=|z ... 3Ty W -.. ’“:\r-1]!

m Equalities from system dynamics zx41 = Az + Bug:

[T '—B ' -

-A I : —B ‘3

Gﬂ_ﬂq — -4 1 i —B ,-|-Eﬂ:1:q —
i 0

e ] ATl B
S
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Constrained Optimal Control: 2-Norm

Gﬂ.iu —

X ={z| Az < b}

0

@ Egm=[-4.0--- 0]

()

Then matrices Gp in, wo.in and Ep i, are:

()
0

0 ;

U={u|Ayu < by}

Wy in =

Construction of the QP without substitution
If X', U and X} are given by:

Xy = {z| Asz < by}

&

l’» | -i" i :Jz:‘
Ot 4l

~
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Constrained Optimal Control: 2-Norm @
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Construction of the QP without substitution

: - . N—-1
Build cost function from MPC cost x) Pry + 3, " 1. Qn + uy Ruy

Matlab hint:
barH = blkdiag(kron(eye(N-1),Q), P, kron(eye(N),R))




Constrained Optimal Control: 2-Norm @

2-Norm State Feedback Solution

Start from QP with substitution.
m Step 1: Define z £ [[; + H~'F'z(0) and transform the problem into

J*(z(0)) = min z'Hz
subj. to  Gpz < wp + Spz(0),

where Sy £ FEy+ GoH-'F', and
7*(2(0)) = J2 (2(0)) — 2(0)'(Y — FH-1F")z(0).

The CFTOC problem is now a multiparametric quadratic program
(mp-QP).

m Step 2: Solve the mp-QP to get explicit solution z*(xz(0))

m Step 3: Obtain UJ(z(0)) from z*(x(0))
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JProblem Formulation
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Constrained Optimal Control: 2-Norm

Problem Formulation

FPiece-wise linear cost function

N=1

Jo(2(0), Uo) := [|Pexllp + D | Quellp + | Ruxll,
k=0

with p=1or p=o0c, P, (}, R full column rank matrices

Constrained Finite Time Optimal Control Problem (CFTOC)

Ji(z(0)) = 11{1_111 Jo(z(0), Up)
-0
subj. to x.. = Az + By, k=0,..., N -1
necX, yeld, k=0,....,.N—-1
Ipn = {Ff
15 = z(0)

(12)

(13)

N is the time horizon and X', U, Ay are polyhedral regions.
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Constrained Optimal Control: 2-Norm

Construction of the LP with substitution

The problem results in the following standard LP

min ch20
m — —_
subj. to Gpz < i + Spx(0)

For a given x(0) U; can be obtained via an LP solver (the 1—norm case is

@ similar).

o 2
Vo tale s
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