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Receding horizon strategy introduces feedback.



Receding horizon control
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Example - Impact of Horizon Length
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Example: Short horizon N=5
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Example: Short horizon N=5
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Example: Long horizon N=20
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Example: Long horizon N=20
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Example: Long horizon N=20
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Infinite Horizon Control Problem: Optimal Solution   

 In some cases we may want to solve the same problem with an
infinite horizon:

 As with the Dynamic Programming approach, the optimal input is of
the form.

and the infinite-horizon cost-to-go is.
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Infinite Horizon Control Problem: Optimal Solution   
 The matrix P∞ comes from an infinite recursion of the RDE, from a point

infinitely far into the future.

 Assuming the RDE does converge to some constant matrix P∞, it must
satisfy the following (from (7), with Pk = Pk+1 = P∞)

which is called the Algebraic Riccati Equation (ARE).

 The constant feedback matrix F∞ is referred to as the asymptotic form of
the Linear Quadratic Regulator (LQR).

 In fact, if (A, B) is controllable and (Q, A) is observable, then the RDE
(initialized with Q at k = ∞ and solved for k 0) converges to the unique
positive definite solution P∞ of the ARE
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Stability of Infinite-Horizon LQR   

 In addition, the closed-loop system with u(k) = F∞x(k) is guaranteed
to be asymptotically stable, under the stabilizability and detectability
assumptions of the previous slide.

 The latter statement can be proven by substituting the control law
u(k) = F∞x(k) into x(k + 1) = A x(k) + B u(k), and then examining
the properties of the system
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Constrained Linear Optimal Control

Constrained Linear Optimal Control
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Feasible Sets

Constrained Linear Optimal Control
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Problem Formulation

Constrained Optimal Control: 2-Norm

22



Construction of the QP with substitution 

Constrained Optimal Control: 2-Norm
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Construction of the QP with substitution

Solution  

Constrained Optimal Control: 2-Norm
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Construction of the QP with substitution

Constrained Optimal Control: 2-Norm
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Construction of the QP without substitution
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Construction of the QP without substitution
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Construction of the QP without substitution
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Construction of the QP without substitution

Constrained Optimal Control: 2-Norm
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2-Norm State Feedback Solution

Constrained Optimal Control: 2-Norm
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Problem Formulation

Constrained Optimal Control: 2-Norm
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Construction of the LP with substitution

Constrained Optimal Control: 2-Norm
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