كنترل پيش بين **Model Predictive Control**

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

Optimal Control

Linear Quadratic Optimal Control

Batch Approach

Recursive Approach

Theceding Horizon

Infinite Horizon Optimal Control

Constrained Linear Optimal Control

Constrained Optimal Control: 2-Norm

Constrained Optimal Control: 1-Norm and *∞*-Norm

Receding horizon control

For unconstrained systems, this is a constant linear controller However, can extend this concept to much more complex systems (MPC)

Example - Impact of Horizon Length

Consider the lightly damped, stable system

$$
G(s) := \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}
$$

where $\omega = 1$, $\zeta = 0.01$. We sample at 10Hz and set $P = Q = I$, $R = 1$.

Discrete-time state-space model:

Closed-loop response

Linear Quadratic Optimal Control

Infinite Horizon Control Problem: Optimal Solution

 In some cases we may want to solve the same problem with an infinite horizon: \sim

$$
J_{\infty}(x(0)) = \min_{u(\cdot)} \left\{ \sum_{k=0} [x'_k Q x_k + u'_k R u_k] \right\}
$$

subject to $x_{k+1} = A x_k + B u_k, \quad k = 0, 1, 2, ..., \infty$,
 $x_0 = x(0)$

 As with the Dynamic Programming approach, the optimal input is of the form.

$$
u^*(k) = -(B'P_{\infty}B + R)^{-1}B'P_{\infty}Ax(k) \triangleq F_{\infty}x(k)
$$

and the infinite-horizon cost-to-go is.

$$
J_{\infty}(x(k)) = x(k)'P_{\infty}x(k).
$$

Linear Quadratic Optimal Control

Infinite Horizon Control Problem: Optimal Solution

- The matrix P_{∞} comes from an infinite recursion of the RDE, from a point infinitely far into the future.
- Assuming the RDE does converge to some constant matrix P_{∞} , it must satisfy the following (from (7), with $P_k = P_{k+1} = P_{\infty}$)

which is called the Algebraic Riccati Equation (ARE).

- The constant feedback matrix F_{∞} is referred to as the asymptotic form of the Linear Quadratic Regulator (LQR).
- In fact, if (A, B) is controllable and (Q, A) is observable, then the RDE (initialized with Q at $k = \infty$ and solved for $k \setminus 0$) converges to the unique positive definite solution P_{∞} of the ARE

Linear Quadratic Optimal Control

Stability of Infinite-Horizon LQR

- In addition, the closed-loop system with $u(k) = F_{\infty}x(k)$ is guaranteed to be asymptotically stable, under the stabilizability and detectability assumptions of the previous slide.
- The latter statement can be proven by substituting the control law $u(k) = F_{\infty}x(k)$ into $x(k + 1) = A x(k) + B u(k)$, and then examining the properties of the system

$$
x(k+1) = (A + BF_{\infty})x(k).
$$
 (8)

The asymptotic stability of (8) can be proven by showing that the infinite horizon cost $J_{\infty}^*(x(k)) = x(k)'P_{\infty}x(k)$ is actually a Lyapunov function for the system, i.e. $J_{\infty}^*(x(k)) > 0$, $\forall k \neq 0$, $J_{\infty}^*(0) = 0$, and $J^*_{\infty}(x(k+1)) < J^*_{\infty}(x(k))$, for any $x(k)$. This implies that

- Optimal Control
- **Linear Quadratic Optimal Control**
- Constrained Linear Optimal Control
	- **O** Problem formulation
	- **Q** Feasible Sets
- Constrained Optimal Control: 2-Norm
- Constrained Optimal Control: 1-Norm and *∞*-Norm

Constrained Linear Optimal Control

Constrained Linear Optimal Control

Cost function

$$
J_0(x(0), U_0) = p(x_N) + \sum_{k=0}^{N-1} q(x_k, u_k)
$$

- $U_0 \triangleq [u'_0, \ldots, u'_{N-1}]'$
- **Squared Euclidian norm:** $p(x_N) = x'_N P x_N$ and $q(x_k, u_k) = x'_k Q x_k + u'_k R u_k$.
- $p = 1$ or $p = \infty$: $p(x_N) = ||Px_N||_p$ and $q(x_k, u_k) = ||Qx_k||_p + ||Ru_k||_p$.

Constrained Finite Time Optimal Control problem (CFTOC)

 $J_0^*(x(0)) = \min_{U_0} J_0(x(0), U_0)$ subj. to $x_{k+1} = Ax_k + Bu_k$, $k = 0, ..., N-1$ $x_k \in \mathcal{X}, u_k \in \mathcal{U}, k = 0, \ldots, N-1$ (9) $x_N \in \mathcal{X}_f$ $x_0 = x(0)$

N is the time horizon and $\mathcal{X}, \mathcal{U}, \mathcal{X}_f$ are polyhedral regions.

Constrained Linear Optimal Control

Feasible Sets

Set of initial states $x(0)$ for which the optimal control problem (9) is feasible:

$$
\mathcal{X}_0 = \{x_0 \in \mathbb{R}^n | \exists (u_0, \dots, u_{N-1}) \text{ such that } x_k \in \mathcal{X}, u_k \in \mathcal{U},
$$

$$
k = 0, \dots, N-1, x_N \in \mathcal{X}_f, \text{ where } x_{k+1} = Ax_k + Bu_k\}
$$

In general \mathcal{X}_i is the set of states x_i at time i for which (9) is feasible:

$$
\mathcal{X}_i = \{x_i \in \mathbb{R}^n | \exists (u_i, \dots, u_{N-1}) \text{ such that } x_k \in \mathcal{X}, u_k \in \mathcal{U},
$$

\n
$$
k = i, \dots, N-1, x_N \in \mathcal{X}_f, \text{ where } x_{k+1} = Ax_k + Bu_k\},
$$

The sets \mathcal{X}_i for $i = 0, ..., N$ play an important role in the the solution of the CFTOC problem. They are independent of the cost.

- Optimal Control
- Linear Quadratic Optimal Control
- Constrained Linear Optimal Control
- Constrained Optimal Control: 2-Norm
	- **Q** Problem Formulation
	- **□** Construction of the QP with substitution
	- **□** Construction of the QP without substitution
- Constrained Optimal Control: 1-Norm and *∞*-Norm

Quadratic cost function

$$
J_0(x(0), U_0) = x_N' P x_N + \sum_{k=0}^{N-1} x_k' Q x_k + u_k' R u_k \tag{10}
$$

with $P \succeq 0$, $Q \succeq 0$, $R \succeq 0$. Constrained Finite Time Optimal Control problem (CFTOC). $J_0^*(x(0)) = \min_{U_0}$ $J_0(x(0), U_0)$ subj. to $x_{k+1} = Ax_k + Bu_k$, $k = 0, ..., N-1$ (11) $x_k \in \mathcal{X}, u_k \in \mathcal{U}, k = 0, \ldots, N-1$ $x_N \in \mathcal{X}_f$ $x_0 = x(0)$

N is the time horizon and X, U, X_f are polyhedral regions.

Construction of the QP with substitution

Step 1: Rewrite the cost as (see previous slides)

$$
J_0(x(0), U_0) = U'_0 H U_0 + 2x(0)' F U_0 + x(0)' Y x(0)
$$

=
$$
[U'_0 x(0)'] [\begin{bmatrix} H & F' \\ F & Y \end{bmatrix} [U_0' x(0)']'
$$

Step 2: Rewrite the constraints compactly as (details provided on the next slide)

 $G_0 U_0 \leq w_0 + E_0 x(0)$

Step 3: Rewrite the optimal control problem as

$$
J_0^*(x(0)) = \min_{U_0} \qquad [U'_0 \ x(0)'] \begin{bmatrix} H & F' \\ F & Y \end{bmatrix} \begin{bmatrix} U'_0 \ x(0)'\end{bmatrix}'
$$

subj. to $G_0 U_0 \le w_0 + E_0 x(0)$

Construction of the QP with substitution Solution

 $J_0^*(x(0)) = \min_{U_0} \qquad [U'_0 \ x(0)'] \begin{bmatrix} H & F' \\ F & Y \end{bmatrix} \begin{bmatrix} U_0' & x(0)'\end{bmatrix}'$ subj. to $G_0 U_0 \leq w_0 + E_0 x(0)$

For a given \times (0) U_0^* can be found via a QP solver.

Construction of the QP with substitution

If X, U and X_f are given by:

$$
\mathcal{X} = \{x \mid A_x x \le b_x\} \qquad \mathcal{U} = \{u \mid A_u u \le b_u\} \qquad \mathcal{X}_f = \{x \mid A_f x \le b_f\}
$$

Then G_0 , E_0 and w_0 are defined as follows

$$
G_{0} = \begin{bmatrix} A_{u} & 0 & \dots & 0 \\ 0 & A_{u} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_{u} \\ A_{x}B & 0 & \dots & 0 \\ A_{x}AB & A_{x}B & \dots & 0 \\ A_{x}AB & A_{x}B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{f}A^{N-1}B & A_{f}A^{N-2}B & \dots & A_{f}B \end{bmatrix}, E_{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -A_{x}A \\ -A_{x}A^{2} \\ \vdots \\ -A_{f}A^{N} \end{bmatrix}, w_{0} = \begin{bmatrix} b_{u} \\ b_{u} \\ \vdots \\ b_{x} \\ b_{x} \\ \vdots \\ b_{f} \end{bmatrix}
$$

Construction of the QP without substitution

To obtain the QP problem

$$
J_0^*(x(0)) = \min_{U_0} \qquad [U'_0 \ x(0)'] \begin{bmatrix} H & F' \\ F & Q \end{bmatrix} [U_0' \ x(0)']'
$$

subj. to $G_0 U_0 \le w_0 + E_0 x(0)$

we have substituted the state equations

$$
x_{k+1} = Ax_k + Bu_k
$$

into the state constraints $x_k \in \mathcal{X}$.

It is often more efficient to keep the explicit equality constraints.

Construction of the QP without substitution

We transform the CFTOC problem into the QP problem

$$
J_0^*(x(0)) = \min_{z} \qquad [z' \ x(0)'] \begin{bmatrix} \bar{H} & 0 \\ 0 & Q \end{bmatrix} [z' \ x(0)']'
$$

subj. to $G_{0,\text{in}} z \le w_{0,\text{in}} + E_{0,\text{in}} x(0)$
 $G_{0,\text{eq}} z = E_{0,\text{eq}} x(0)$

Define variable:

27

$$
z = \begin{bmatrix} x'_1 & \dots & x'_N & u'_0 & \dots & u'_{N-1} \end{bmatrix}'
$$

Equalities from system dynamics $x_{k+1} = Ax_k + Bu_k$:

$$
G_{0,eq} = \begin{bmatrix} I & & & & -B & & \\ -A & I & & & & & \\ & -A & I & & & & \\ & & \ddots & \ddots & & & \\ & & & -A & I & & \\ & & & & & -B \end{bmatrix}, E_{0,eq} = \begin{bmatrix} A \\ 0 \\ \vdots \\ 0 \end{bmatrix}
$$

Construction of the QP without substitution

If X, U and X_f are given by:

 $\mathcal{X} = \{x \mid A_x x \leq b_x\}$ $\mathcal{U} = \{u \mid A_u u \leq b_u\}$ $\mathcal{X}_f = \{x \mid A_f x \leq b_f\}$

Then matrices $G_{0,\text{in}}$, $w_{0,\text{in}}$ and $E_{0,\text{in}}$ are:

Construction of the QP without substitution

Build cost function from MPC cost $x'_N Px_N + \sum_{k=0}^{N-1} x'_k Qx_k + u'_k Ru_k$

Matlab hint:

 $barH = blkdiag(kron(eye(N-1), Q), P, kron(eye(N), R))$

2-Norm State Feedback Solution

Start from QP with substitution.

Step 1: Define $z \triangleq U_0 + H^{-1}F'x(0)$ and transform the problem into

$$
\hat{J}^*(x(0)) = \min_{z} \hat{z}' Hz
$$

subject to $G_0 z \leq w_0 + S_0 x(0),$

where $S_0 \triangleq E_0 + G_0 H^{-1} F'$, and $\hat{J}^*(x(0)) = J_0^*(x(0)) - x(0)'(Y - FH^{-1}F')x(0).$

The CFTOC problem is now a multiparametric quadratic program $(mp-QP)$.

Step 2: Solve the mp-QP to get explicit solution $z^*(x(0))$

Step 3: Obtain $U_0^*(x(0))$ from $z^*(x(0))$

- Optimal Control
- **Linear Quadratic Optimal Control**
- Constrained Linear Optimal Control
- Constrained Optimal Control: 2-Norm
- Constrained Optimal Control: 1-Norm and *∞*-Norm
	- **OProblem Formulation**
	- **Q**Construction of the LP with substitution

Piece-wise linear cost function

$$
J_0(x(0), U_0) := ||Px_N||_p + \sum_{k=0}^{N-1} ||Qx_k||_p + ||Ru_k||_p
$$
\n(12)

with $p = 1$ or $p = \infty$, P, Q, R full column rank matrices

Constrained Finite Time Optimal Control Problem (CFTOC)

$$
J_0^*(x(0)) = \min_{U_0} J_0(x(0), U_0)
$$

subj. to $x_{k+1} = Ax_k + Bu_k$, $k = 0, ..., N-1$
 $x_k \in \mathcal{X}$, $u_k \in \mathcal{U}$, $k = 0, ..., N-1$
 $x_N \in \mathcal{X}_f$
 $x_0 = x(0)$ (13)

N is the time horizon and X, U, X_f are polyhedral regions.

32

Construction of the LP with substitution

The problem results in the following standard LP

 c'_0z_0 min subj. to $\bar{G}_0 z_0 \le \bar{w}_0 + \bar{S}_0 x(0)$

where $z_0 := \{\varepsilon_0^x, \ldots, \varepsilon_N^x, \varepsilon_0^u, \ldots, \varepsilon_{N-1}^u, u_0', \ldots, u_{N-1}'\} \in \mathbb{R}^s$, $s \triangleq (m+1)N + N + 1$ and

$$
\bar{G}_0 = \left[\begin{array}{cc} G_{\varepsilon} & 0 \\ 0 & G_0 \end{array} \right], \ \bar{S}_0 = \left[\begin{array}{c} S_{\varepsilon} \\ S_0 \end{array} \right], \ \bar{w}_0 = \left[\begin{array}{c} w_{\varepsilon} \\ w_0 \end{array} \right]
$$

For a given $x(0)$ U_0^* can be obtained via an LP solver (the 1-norm case is similar).

- \Box Optimal Control
- **Linear Quadratic Optimal Control**
	- Batch Approach
	- Recursive Approach
	- Receding Horizon
	- Infinite Horizon Optimal Control
- Constrained Linear Optimal Control
	- **Problem formulation**
	- \Box Feasible Sets
- Constrained Optimal Control: 2-Norm
	- **Problem Formulation**
	- \Box Construction of the QP with substitution
	- \Box Construction of the QP without substitution
- Constrained Optimal Control: 1-Norm and *∞*-Norm
	- **Problem Formulation**
	- \Box Construction of the LP with substitution

