کنترل پیش بین Model Predictive Control

ارائه کننده: امیرحسین نیکوفرد مهندسی برق و کامپیوتر دانشگاه خواجه نصیر

MPC

- Basic Ideas of Predictive Control
- Receding Horizon Control Notation
- □ MPC Features
- □ Stability and Invariance of MPC
- □ Feasibility and Stability
 - $\Box Proof \text{ for } X_f = 0$
 - General Terminal Sets
 - **Example**
- **Extension to Nonlinear MPC**

Basic Ideas of Predictive Control

Infinite Time Constrained Optimal Control

(what we would like to solve)

$$J_0^*(x(0)) = \min \sum_{k=0}^{\infty} q(x_k, u_k)$$

s.t. $x_{k+1} = Ax_k + Bu_k, k = 0, \dots, N-1$
 $x_k \in \mathcal{X}, u_k \in \mathcal{U}, k = 0, \dots, N-1$
 $x_0 = x(0)$

 $\hfill\square$ Stage cost q(x, u) describes "cost" of being in state x and applying input u

- Optimizing over a trajectory provides a tradeoff between short- and long-term benefits of actions
- □ We'll see that such a control law has many beneficial properties.... but we can't compute it: there are **an infinite number of variables**

Basic Ideas of Predictive Control

Receding Horizon Control (what we can sometimes solve)

$$J_{t}^{*}(x(t)) = \min_{U_{t}} \qquad p(x_{t+N}) + \sum_{k=0}^{N-1} q(x_{t+k}, u_{t+k})$$

subj. to $x_{t+k+1} = Ax_{t+k} + Bu_{t+k}, \ k = 0, \dots, N-1$
 $x_{t+k} \in \mathcal{X}, \ u_{t+k} \in \mathcal{U}, \ k = 0, \dots, N-1$
 $x_{t+N} \in \mathcal{X}_{f}$
 $x_{t} = x(t)$ (1)

where $U_t = \{u_t, ..., u_{t+N-1}\}.$

Truncate after a finite horizon:

- p(x_{t+N}) : Approximates the 'tail' of the cost
- *X_f* : Approximates the 'tail' of the constraints

4 The resultant controller is referred to as Receding Horizon Controller (RHC) or Model Predictive Controller (MPC).

5

Basic Ideas of Predictive Control

On-line Receding Horizon Control

- 1) MEASURE the state x(t) at time instance t
- 2) OBTAIN $U_t^*(x(t))$ by solving the optimization problem in (1)
- 3) IF $U_t^*(x(t)) = \emptyset$ THEN 'problem infeasible' STOP
- 4) APPLY the first element u_t^* of U_t^* to the system
- 5) WAIT for the new sampling time t + 1, GOTO 1)

Note that, we need a constrained optimization solver for step 2).

MPC

- Basic Ideas of Predictive Control
- Receding Horizon Control Notation
- □ MPC Features
- □ Stability and Invariance of MPC
- □ Feasibility and Stability
 - $\Box Proof \text{ for } X_f = 0$
 - General Terminal Sets
 - Example
- **Extension to Nonlinear MPC**

RHC Notation

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \\ x(t) \in \mathcal{X}, \ u(t) \in \mathcal{U}, \ \forall t \geq 0 \end{aligned}$$

The CFTOC Problem

$$\begin{aligned} J_t^*(x(t)) &= \min_{U_{t \to t+N|t}} \quad p(x_{t+N|t}) + \sum_{k=0}^{N-1} q(x_{t+k|t}, u_{t+k|t}) \\ \text{subj. to} \quad x_{t+k+1|t} &= A x_{t+k|t} + B u_{t+k|t}, \ k = 0, \dots, N-1 \\ & x_{t+k|t} \in \mathcal{X}, \ u_{t+k|t} \in \mathcal{U}, \ k = 0, \dots, N-1 \\ & x_{t+N|t} \in \mathcal{X}_f \\ & x_{t|t} = x(t) \end{aligned}$$

with $U_{t\to t+N|t} = \{u_{t|t}, \dots, u_{t+N-1|t}\}.$

8

RHC Notation

- x(t) is the state of the system at time t.
- $x_{t+k|t}$ is the state of the model at time t + k, predicted at time t obtained by starting from the current state $x_{t|t} = x(t)$ and applying to the system model

$$x_{t+1|t} = Ax_{t|t} + Bu_{t|t}$$

the input sequence $u_{t|t}, \ldots, u_{t+k-1|t}$.

- For instance, x_{3|1} represents the predicted state at time 3 when the prediction is done at time t = 1 starting from the current state x(1). It is different, in general, from x_{3|2} which is the predicted state at time 3 when the prediction is done at time t = 2 starting from the current state x(2).
- Similarly u_{t+k|t} is read as "the input u at time t + k computed at time t".

RHC Notation

Let $U^*_{t \to t+N|t} = \{u^*_{t|t}, \dots, u^*_{t+N-1|t}\}$ be the optimal solution. The first element of $U^*_{t \to t+N|t}$ is applied to system

 $u(t) = u_{t|t}^*(x(t)).$

The CFTOC problem is reformulated and solved at time t + 1, based on the new state x_{t+1|t+1} = x(t + 1).

Receding horizon control law

$$f_t(x(t)) = u_{t|t}^*(x(t))$$

Closed loop system

$$x(t+1) = Ax(t) + Bf_t(x(t)) \triangleq f_{cl}(x(t)), \ t \ge 0$$

RHC Notation: Time-invariant Systems

As the system, the constraints and the cost function are time-invariant, the solution $f_t(x(t))$ becomes a time-invariant function of the initial state x(t). Thus, we can simplify the notation as

87 1

$$J_0^*(x(t)) = \min_{U_0} \qquad p(x_N) + \sum_{k=0}^{N-1} q(x_k, u_k)$$

subj. to
$$x_{k+1} = Ax_k + Bu_k, \ k = 0, \dots, N-1$$
$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0, \dots, N-1$$
$$x_N \in \mathcal{X}_f$$
$$x_0 = x(t)$$

where $U_0 = \{u_0, \ldots, u_{N-1}\}.$

The control law and closed loop system are **time-invariant** as well, and we write $f_0(x_0)$ for $f_t(x(t))$.

MPC

- Basic Ideas of Predictive Control
- Receding Horizon Control Notation
- □ MPC Features
- □ Stability and Invariance of MPC
- □ Feasibility and Stability
 - $\Box Proof \text{ for } X_f = 0$
 - General Terminal Sets
 - **Example**
- **Extension to Nonlinear MPC**

Pros

- Any model
 - 🗆 linear
 - 🗆 nonlinear
 - □ single/multivariable
 - \Box time delays
 - \Box constraints
- Any objective:
 - □ sum of squared errors
 - □ sum of absolute errors (i.e.,integral)
 - user worst error over time
 - \Box economic objective

Cons

- Computationally demanding in the general case
- □May or may not be stable
- □May or may not be feasibles

Example: Cessna Citation Aircraft

Linearized continuous-time model:

(at altitude of 5000m and a speed of 128.2 m/sec)

$$\dot{x} = \begin{bmatrix} -1.2822 & 0 & 0.98 & 0 \\ 0 & 0 & 1 & 0 \\ -5.4293 & 0 & -1.8366 & 0 \\ -128.2 & 128.2 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} -0.3 \\ 0 \\ -17 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x$$
Angle of attack
$$y = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x$$

- Input: elevator angle
- States: x_1 : angle of attack, x_2 : pitch angle, x_3 : pitch rate, x_4 : altitude
- Outputs: pitch angle and altitude
- Constraints: elevator angle ±0.262rad (±15°), elevator rate ±0.524rad (±60°), pitch angle ±0.349 (±39°)

Open-loop response is unstable (open-loop poles: 0, 0, $-1.5594 \pm 2.29i$)

LQR and Linear MPC with Quadratic Cost

- Quadratic cost
- Linear system dynamics
- Linear constraints on inputs and states

$$LQR$$

$$J_{\infty}(x(t)) = \min \sum_{k=0}^{\infty} x_t^T Q x_t + u_k^T R u_k$$
s.t. $x_{k+1} = A x_k + B u_k$
 $x_0 = x(t)$

$$MPC$$

$$J_0^*(x(t)) = \min_{U_0} \sum_{k=0}^{N-1} x_k^T Q x_k + u_k^T R u_k$$
s.t. $x_{k+1} = A x_k + B u_k$
 $x_k \in \mathcal{X}, \ u_k \in \mathcal{U}$
 $x_0 = x(t)$

Assume: $Q = Q^T \succeq 0$, $R = R^T \succ 0$

Example: LQR with saturation

Linear quadratic regulator with saturated inputs.

At time t = 0 the plane is flying with a deviation of 10m of the desired altitude, i.e. $x_0 = [0; 0; 0; 10]$

Problem parameters: Sampling time 0.25sec, Q = I, R = 10

- Closed-loop system is unstable
- Applying LQR control and saturating the controller can lead to instability!

16

17

Example: MPC with Bound Constraints on Inputs

MPC controller with input constraints $|u_i| \leq 0.262$

⇒ System does not converge to desired steady-state but to a limit cycle

18

Example: MPC with all Input Constraints

MPC controller with input constraints $|u_i| \le 0.262$ and rate constraints $|\dot{u}_i| \le 0.349$ approximated by $|u_k - u_{k-1}| \le 0.349 T_s$

Problem parameters: Sampling time 0.25sec, Q = I, R = 10, N = 10

- The MPC controller considers all constraints on the actuator
 - Closed-loop system is stable
 - Efficient use of the control authority

19

Example: Inclusion of state constraints

MPC controller with input constraints $|u_i| \le 0.262$ and rate constraints $|\dot{u}_i| \le 0.349$ approximated by $|u_k - u_{k-1}| \le 0.349 T_s$

Problem parameters: Sampling time 0.25sec, Q = I, R = 10, N = 10

Increase step:

At time t = 0 the plane is flying with a deviation of 100m of the desired altitude, i.e. $x_0 = [0; 0; 0; 100]$

 Pitch angle too large during transient

Example: Short horizon

MPC controller with input constraints $|u_i| \le 0.262$ and rate constraints $|\dot{u}_i| \le 0.349$ approximated by $|u_k - u_{k-1}| \le 0.349 T_s$

Problem parameters: Sampling time 0.25sec, Q = I, R = 10, N = 10

Add state constraints for passenger comfort:

$$|x_2| \le 0.349$$

21

Example: Short horizon

MPC controller with input constraints $|u_i| \le 0.262$ and rate constraints $|\dot{u}_i| \le 0.349$ approximated by $|u_k - u_{k-1}| \le 0.349 T_s$

0.5 20 Altitude x4 (m) -2010 0 2 6 8 4 Time (sec) 0.5 Elevator angle u (rad) -0.5**L** 2 8 10 6 Л Time (sec)

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 4

Decrease in the prediction horizon causes loss of the stability properties

Pitch angle x₂ (rad)

Example: Short horizon

MPC controller with input constraints $|u_i| \le 0.262$ and rate constraints $|\dot{u}_i| \le 0.349$ approximated by $|u_k - u_{k-1}| \le 0.349 T_s$

دانشاه منتي فالبذسيرالدن فديم

Problem parameters:

Sampling time 0.25sec, Q = I, R = 10, N = 4

Inclusion of terminal cost and constraint provides stability

22

MPC

- Basic Ideas of Predictive Control
- Receding Horizon Control Notation
- □ MPC Features
- □ Stability and Invariance of MPC
- □ Feasibility and Stability
 - $\Box Proof \text{ for } X_f = 0$
 - General Terminal Sets
 - **Example**
- **Extension to Nonlinear MPC**

Loss of Feasibility and Stability

□ What can go wrong with "standard" MPC?

- No feasibility guarantee, i.e., the MPC problem may not have a solution
- No stability guarantee, i.e., trajectories may not converge to the origin

□ Infeasibility can be due to:

- modeling errors
- disturbances
- wrong MPC setup (e.g., prediction horizon is too short)

Example : Loss of feasibility - Double Integrator

Consider the double integrator

$$\begin{cases} x(t+1) &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ y(t) &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

subject to the input constraints

$$-0.5 \le u(t) \le 0.5$$

and the state constraints

$$\begin{bmatrix} -5\\ -5 \end{bmatrix} \le x(t) \le \begin{bmatrix} 5\\ 5 \end{bmatrix}.$$

Compute a receding horizon controller with quadratic objective with

$$N = 3, P = Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 10.$$

1 00 0 50

Example : Loss of feasibility - Double Integrator

The QP problem associated with the RHC is

0 50

$$H = \begin{bmatrix} 13.50 & -10.00 & -0.50 \\ -10.00 & 22.00 & -10.00 \\ -0.50 & -10.00 & 31.50 \end{bmatrix}, \quad F = \begin{bmatrix} -10.50 & 10.00 & -0.50 \\ -20.50 & 10.00 & 9.50 \end{bmatrix}, \quad Y = \begin{bmatrix} 14.50 & 23.50 \\ 23.50 & 54.50 \end{bmatrix}$$

$ G_0 = \begin{bmatrix} -0.50 & 1.00 & -0.50 \\ -0.50 & 0.00 & 0.50 \\ -0.50 & 0.00 & -0.50 \\ 0.50 & 0.00 & -0.50 \\ 0.50 & 0.00 & -0.50 \\ 0.50 & 0.00 & 0.00 \\ 0.00 & -1.00 & 0.00 \\ 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 & -1.00 \\ 0.00 & 0.00 & -1.00 \\ 0.00 & 0.00 & 0.00 \\ -0.50 & 0.00 & 0.50 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.50 & 0.00 & -0.50 \\ -0.50 & 0.00 & 0.50 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ 0.50 & 0.00 & -0.50 \\ -0.50 & 0.00 & -0.50 \\ -0.50 & 0.00 & 0.50 \\ 0.50 & 0.00 & -0.50 \\ -0.50 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 \\ $
--

Example : Loss of feasibility - Double Integrator

- 1) MEASURE the state x(t) at time instance t
- 2) OBTAIN $U_0^*(x(t))$ by solving the optimization problem in (1)
- 3) IF $U_0^*(x(t)) = \emptyset$ THEN 'problem infeasible' STOP
- 4) APPLY the first element u_0^* of U_0^* to the system
- 5) WAIT for the new sampling time t + 1, GOTO 1)

27

Depending on initial condition, closed loop trajectory may lead to states for which optimization problem is infeasible.

- Boxes (Circles) are initial points leading (not leading) to feasible closed-loop trajectories
- Go to mpcdoubleint.m in MPC Toolbox

Summary: Feasibility and Stability

Problems originate from the use of a 'short sighted' strategy

 \Rightarrow Finite horizon causes deviation between the open-loop prediction and the closed-loop system: Set of feasible

- Ideally we would solve the MPC problem with an infinite horizon, but that is computationally intractable
- > Design finite horizon problem such that it approximates the infinite horizon

Summary: Feasibility and Stability

Infinite-Horizon

If we solve the RHC problem for $N = \infty$ (as done for LQR), then the open loop trajectories are the same as the closed loop trajectories. Hence

- If problem is feasible, the closed loop trajectories will be always feasible
- If the cost is finite, then states and inputs will converge asymptotically to the origin
- Finite-Horizon

RHC is "short-sighted" strategy approximating infinite horizon controller. But

- Feasibility. After some steps the finite horizon optimal control problem may become infeasible. (Infeasibility occurs without disturbances and model mismatch!)
- Stability. The generated control inputs may not lead to trajectories that converge to the origin.

Feasibility and stability in MPC - Solution

 Main idea: Introduce terminal cost and constraints to explicitly ensure feasibility and stability:

$$J_0^*(x_0) = \min_{U_0} \qquad p(x_N) + \sum_{k=0}^{N-1} q(x_k, u_k) \qquad \text{Terminal Cost}$$

subj. to
$$x_{k+1} = Ax_k + Bu_k, \ k = 0, \dots, N-1$$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0, \dots, N-1$$

$$x_N \in \mathcal{X}_f \qquad \text{Terminal Constraint}$$

$$x_0 = x(t)$$

 $p(\cdot)$ and \mathcal{X}_f are chosen to mimic an infinite horizon.

MPC

- Basic Ideas of Predictive Control
- Receding Horizon Control Notation
- □ MPC Features
- □ Stability and Invariance of MPC
- □ Feasibility and Stability
 - $\Box Proof \text{ for } X_f = 0$
 - General Terminal Sets
 - **Example**
- **Extension to Nonlinear MPC**

Feasibility and Stability of MPC: Proof

Main steps:

- Prove recursive feasibility by showing the existence of a feasible control sequence at all time instants when starting from a feasible initial point
- Prove stability by showing that the optimal cost function is a Lyapunov function

Two cases:

- 1. Terminal constraint at zero: $x_N = 0$
- 2. Terminal constraint in some (convex) set: $x_N \in X_f$

General notation:

$$J_0^*(x_0) = \min_{U_0} \underbrace{p(x_N)}_{\text{terminal cost}} + \sum_{i=0}^{N-1} \underbrace{q(x_i, u_i)}_{\text{stage cost}}$$

Quadratic case: $q(x_i, u_i) = x_i^T Q x_i + u_i^T R u_i, \ p(x_N) = x_N^T P x_N$

Stability of MPC - Zero terminal state constraint

Terminal constraint: $x_N \in X_f = 0$

- Assume feasibility of x₀ and let {u₀^{*}, u₁^{*}, ..., u_{N-1}^{*}} be the optimal control sequence computed at x₀ and {x(0), x₁, ..., x_N} be the corresponding state trajectory
- Apply u_0^* and let system evolve to $x(1) = Ax_0 + Bu_0^*$
- At x(1) the control sequence {u₁^{*}, u₂^{*}, ..., u_{N-1}^{*}, 0} is feasible (apply 0 control input ⇒ x_{N+1} = 0)

 \Rightarrow Recursive feasibility \checkmark

34

 $\Rightarrow J_0^*(x)$ is a Lyapunov function \rightarrow (Lyapunov) Stability \checkmark

 $x_N = 0$

Stability of MPC - Zero terminal state constraint

Example: Impact of Horizon with Zero Terminal Constraint

System dynamics:

$$x_{k+1} = \begin{bmatrix} 1.2 & 1\\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 1\\ 0.5 \end{bmatrix} u_k$$

Constraints:

$$\mathcal{X} := \{x \mid -50 \le x_1 \le 50, \ -10 \le x_2 \le 10\} = \{x \mid A_x x \le b_x\} \\ \mathcal{U} := \{u \mid \|u\|_{\infty} \le 1\} = \{u \mid A_u u \le b_u\}$$

Stage cost:

$$q(x, u) := x' \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x + u^T u$$

36

Extension to More General Terminal Sets

Problem: The terminal constraint $x_N = 0$ reduces the size of the feasible set **Goal:** Use convex set X_f to increase the region of attraction

Goal: Generalize proof to the constraint $x_N \in X_f$

Invariant sets

Definition: Invariant set

A set \mathcal{O} is called *positively invariant* for system $x(t+1) = f_{cl}(x(t))$, if

 $x(0) \in \mathcal{O} \Rightarrow x(t) \in \mathcal{O}, \quad \forall t \in \mathbb{N}_+$

The positively invariant set that contains every closed positively invariant set is called the maximal positively invariant set \mathcal{O}_{∞} .

Stability of MPC - Main Result

Assumptions

- Stage cost is positive definite, i.e. it is strictly positive and only zero at the origin
- **2** Terminal set is **invariant** under the local control law $v(x_k)$:

$$x_{k+1} = Ax_k + Bv(x_k) \in \mathcal{X}_f$$
, for all $x_k \in \mathcal{X}_f$

All state and input constraints are satisfied in X_f :

 $\mathcal{X}_f \subseteq \mathcal{X}, v(x_k) \in \mathcal{U}, \text{ for all } x_k \in \mathcal{X}_f$

3 Terminal cost is a continuous Lyapunov function in the terminal set X_f and satisfies:

$$p(x_{k+1}) - p(x_k) \leq -q(x_k, v(x_k)), \text{ for all } x_k \in \mathcal{X}_f$$

Under those 3 assumptions:

Theorem

The closed-loop system under the MPC control law $u_0^*(x)$ is asymptotically stable and the set \mathcal{X}_f is positive invariant for the system $x(k+1) = Ax + Bu_0^*(x)$.

Stability of MPC - Outline of the Proof

Assume feasibility of x(0) and let {u₀^{*}, u₁^{*}, ..., u_{N-1}^{*}} be the optimal control sequence computed at x(0) and {x(0), x₁, ..., x_N} the corresponding state trajectory

⇒ Terminal constraint provides recursive feasibility

Stability of MPC - Outline of the Proof

- Assume feasibility of x(0) and let $\{u_0^*, u_1^*, \ldots, u_{N-1}^*\}$ be the optimal control sequence computed at x(0) and $\{x(0), x_1, \ldots, x_N\}$ the corresponding state trajectory
- At x(1), {u₁^{*}, u₂^{*}, ..., v(x_N)} is feasible:
 x_N is in X_f → v(x_N) is feasible
 and x_{N+1} = Ax_N + Bv(x_N) in X_f

⇒ Terminal constraint provides recursive feasibility

Stability of MPC - Outline of the Proof

$$J_0^*(x_0) = \sum_{i=0}^{N-1} q(x_i, u_i^*) + p(x_N)$$

Feasible, sub-optimal sequence for $x_1 : \{u_1^*, u_2^*, \dots, v(x_N)\}$ $J_0^*(x_1) \leq \sum_{i=1}^N q(x_i, u_i^*) + p(Ax_N + Bv(x_N))$ $= \sum_{i=0}^{N-1} q(x_i, u_i^*) + p(x_N) - q(x_0, u_0^*) + p(Ax_N + Bv(x_N))$ $- p(x_N) + q(x_N, v(x_N))$ $= J_0^*(x_0) - q(x_0, u_0^*) + \underbrace{p(Ax_N + Bv(x_N)) - p(x_N) + q(x_N, v(x_N))}_{p(x) \leq 0}$ $\implies J_0^*(x_1) - J_0^*(x_0) \leq -q(x_0, u_0^*), \quad q > 0$

 $J_0^*(x)$ is a Lyapunov function decreasing along the closed loop trajectories \Rightarrow The closed-loop system under the MPC control law is asymptotically stable

Feasibility and Stability

Choice of Terminal Sets and Cost - Linear System, Quadratic Cost

$$J_0^*(x_0) = \min_{U_0} \qquad x'_N P x_N + \sum_{k=0}^{N-1} x'_k Q x_k + u'_k R u_k \qquad \text{Terminal Cost}$$

subj. to
$$x_{k+1} = A x_k + B u_k, \ k = 0, \dots, N-1$$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0, \dots, N-1$$

$$x_N \in \mathcal{X}_f \qquad \text{Terminal Constraint}$$

$$x_0 = x(t)$$

Choice of Terminal Sets and Cost - Linear System, Quadratic Cost

Design unconstrained LQR control law

$$F_{\infty} = -(B'P_{\infty}B + R)^{-1}B'P_{\infty}$$

where P_{∞} is the solution to the discrete-time algebraic Riccati equation:

$$P_{\infty} = A'P_{\infty}A + Q - A'P_{\infty}B(B'P_{\infty}B + R)^{-1}B'P_{\infty}A$$

- Choose the terminal weight P = P_∞
- Choose the terminal set X_f to be the maximum invariant set for the closed-loop system x_{k+1} = (A + BF_∞)x_k:

$$x_{k+1} = Ax_k + BF\infty(x_k) \in \mathcal{X}_f$$
, for all $x_k \in \mathcal{X}_f$

All state and input constraints are satisfied in \mathcal{X}_f :

$$\mathcal{X}_f \subseteq \mathcal{X}, F_{\infty} x_k \in \mathcal{U}, \text{ for all } x_k \in \mathcal{X}_f$$

Choice of Terminal Sets and Cost - Linear System, Quadratic Cost

- The stage cost is a positive definite function
- 2 By construction the terminal set is invariant under the local control law v = F_∞x
- 3 Terminal cost is a continuous Lyapunov function in the terminal set X_f and satisfies:

 $x'_{k+1}Px_{k+1} - x'_kPx_k = x'_k(-P_{\infty} + A'P_{\infty}A - A'P_{\infty}B(B'P_{\infty}B + R)^{-1}B'P_{\infty}A)x_k$ = $-x'_kQx_k$

All the Assumptions of the Feasibility and Stability Theorem are verified.

Example: Unstable Linear System

System dynamics:

$$x_{k+1} = \begin{bmatrix} 1.2 & 1\\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} 1\\ 0.5 \end{bmatrix} u_k$$

Constraints:

$$\begin{aligned} \mathcal{X} &:= \{x \mid -50 \le x_1 \le 50, \ -10 \le x_2 \le 10 \} = \{x \mid A_x x \le b_x \} \\ \mathcal{U} &:= \{u \mid \|u\|_{\infty} \le 1 \} = \{u \mid A_u u \le b_u \} \end{aligned}$$

Stage cost:

$$q(x, u) := x' \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x + u^T u$$

Horizon: N = 10

48

53

Example: Closed-loop behavior

Stability of MPC – Remarks

 $\hfill The terminal set <math display="inline">X_f$ and the terminal cost ensure recursive feasibility and stability of the closed-loop system.

But: the terminal constraint reduces the region of attraction.

(Can extend the horizon to a sufficiently large value to increase the region)

Are terminal sets used in **practice**?

- Generally not...
 - □ Not well understood by practitioners
 - Requires advanced tools to compute (polyhedral computation or LMI)
- Reduces region of attraction
 - A 'real' controller must provide some input in every circumstance
- Often unnecessary
 - \square Stable system, long horizon \rightarrow will be stable and feasible in a (large) neighbourhood of the origin

Choice of Terminal Set and Cost: Summary

- Terminal constraint provides a sufficient condition for stability
- Region of attraction without terminal constraint may be larger than for MPC with terminal constraint but characterization of region of attraction extremely difficult
- $\Box X_f = 0$ simplest choice but small region of attraction for small N
- □ Solution for linear systems with quadratic cost
- □ In practice: Enlarge horizon and check stability by sampling
- With larger horizon length N , region of attraction approaches maximum control invariant set

MPC

- Basic Ideas of Predictive Control
- Receding Horizon Control Notation
- □ MPC Features
- □ Stability and Invariance of MPC
- □ Feasibility and Stability
 - $\Box Proof \text{ for } X_f = 0$
 - General Terminal Sets
 - Example
- **Extension to Nonlinear MPC**

Extension to Nonlinear MPC

Extension to Nonlinear MPC

Consider the nonlinear system dynamics: x (t + 1) = g (x (t), u(t))

$$J_0^*(x(t)) = \min_{U_0} \qquad p(x_N) + \sum_{k=0}^{N-1} q(x_k, u_k)$$

subj. to
$$x_{k+1} = g(x_k, u_k), \ k = 0, \dots, N-1$$
$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ k = 0, \dots, N-1$$
$$x_N \in \mathcal{X}_f$$
$$x_0 = x(t)$$

- Presented assumptions on the terminal set and cost did not rely on linearity
- Lyapunov stability is a general framework to analyze stability of nonlinear dynamic systems
- \rightarrow Results can be directly extended to nonlinear systems.

However, computing the sets X_f and function p can be very difficult

Summary:

Finite-horizon MPC may not be stable! Finite-horizon MPC may not satisfy constraints for all time!

An infinite-horizon provides stability and invariance.

- ❑ We 'fake' infinite-horizon by forcing the final state to be in an invariant set for which there exists an invariance-inducing controller, whose infinitehorizon cost can be expressed in closed-form.
- □ These ideas extend to non-linear systems, but the sets are difficult to compute.