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Basic Ideas of Predictive Control @

Infinite Time Constrained Optimal Control

(What we would like to solve)

&0

Jiy (2(0)) = min Z q( Tp, )

k=)

s.t. Tp41 = Am + Bup, k=0,...,N -1
mneX wueldk=0.....N—-1
79 = z(0)

[ Stage cost q(x, u) describes “cost” of being in state x and applying input u

[ Optimizing over a trajectory provides a tradeoff between short- and
long-term benetfits of actions

0 We'll see that such a control law has many beneficial properties.... but we

can’t compute it: there are an infinite number of variables

© y
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Basic Ideas of Predictive Control

Receding Horizon Control

(What we can sometimes solve)

N-1

B0)= g plen) + 3 s we)
ﬁllbj. to Titk4+1 = fl.'r_t_:.;,; + B‘Ut+k5. k= U._, o i
Tit+k = e:t',_@ Uy k = H, k= ‘D! S N
Ti+N € :-7(_}
r; = z(t)
where Uy = {ue, ..., wrN=1}.

Truncate after a finite horizon:
m (7 n) : Approximates the 'tail’ of the cost
m Ay : Approximates the ‘tail’ of the constraints

o
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Basic Ideas of Predictive Control @

On-line Receding Horizon Control

At each sampling time, solve a CFTOC.

H Apply the optimal input only during [¢, ¢ + 1]

At t + 1 solve a CFTQOC over a shifted horizon based on new state
measurements

a The resultant controller is referred to as Receding Horizon Controller

(RHC) or Model Predictive Controller (MPC).
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On-line Receding Horizon Control

1) MEASURE the state z(t) at time instance ¢

2) OBTAIN Uf(z(t)) by solving the optimization problem in (1)
3) IF Uf(z(t)) =0 THEN ‘problem infeasible’ STOP

4) APPLY the first element u} of U to the system

5) WAIT for the new sampling time ¢+ 1, GOTO 1)

Note that, we need a constrained optimization solver for step 2).

o
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Receding Horizon Control Notation

RHC Notation
r(t+1) = Az(t)+ Bu(t)
y(t) = Cz(t)

r(t) € X, u(t) e, YVt =0
The CFTOC Problem

N-1
Ji(z(t)) = irmm p(It+N|t} + Z Q(Iz+knteﬂ-z+k|t)
oA k=0
subj. to Tyt = ATepppe + Buggppe, k=0,...,N—1
T+ k|t € A, Uty k|t € U, k=0,....N-1
Tip Nt € Af
Tt = x(t)

' T _ F
with {«"t—}t+N|t — {ﬂﬂm caes U!.+N—1ﬂt}*
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Receding Horizon Control Notation @

[ oy b
O i -]

RHC Notation

m z(t) is the state of the system at time ¢.

W ;.4 is the state of the model at time  + k, predicted at time ¢ obtained by
starting from the current state z;; = z(t) and applying to the system model

Tep1t = Azye + By,

the input sequence Up|py oy Upp 1]t

m For instance, z3), represents the predicted state at time 3 when the prediction
is done at time ¢ = 1 starting from the current state z(1). It is different, in
general, from 32 which is the predicted state at time 3 when the prediction
is done at time ¢ = 2 starting from the current state z(2).

m Similarly wu; ) is read as "the input u at time ¢ + k computed at time ¢".

\
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Receding Horizon Control Notation @

[ {1 12 "l-’g'
Vr°;~‘/: ..z‘r’u“ F-d})

RHC Notation
mlet UF,, i = {8s- - uf, y_1)¢} be the optimal solution. The first
element of U‘:_}HNH is applied to system

u(t) = ufy,(x(1)).

m The CFTOC problem is reformulated and solved at time t + 1, based on the
new state ;4 1)¢41 = o(f +1).

Receding horizon control law

fulz(t)) = uj, (1))

Closed loop system

(t +1) = Az(t) + Bfi(z(t)) = fa(z(t)), t =0

\
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RHC Notation: Time-invariant Systems

As the system, the constraints and the cost function are time-invariant, the
solution f;(z(t)) becomes a time-invariant function of the initial state z(#). Thus,
we can simplify the notation as

N-=-1
Jg (z(1)) = min plen) + ) qlze, w)
Vo k=0
subj. to
Tpy1 = Az + By, k=0,...,N -1
nekX, e, k=0,.... N—-1
Ty € .-:t:f
19 = z(1)
where Uy = {ug, ..., uny_1}.

The control law and closed loop system are time-invariant as well, and we write

@ ffl{i:[’lj for ft('r(t})
A /
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MPC Features @

JPros J Cons
JAny model L Computationally demanding in the
linear general case
nonlinear (May or may not be stable
single/multivariable (May or may not be feasibles

time delays
constraints
L Any objective:
sum of squared errors
sum of absolute errors (i.e.,integral)
worst error over time

economic objective

o
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MPC Features

r & kg
b W
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y:

m Input: elevator angle

[—1.2822
0
—5.4293
| —128.2
0 1 0

0 0 0

()

()

()
128.2

0
NE

0.98
1
—1.8366
()

i
0
0
D-

T+

Example: Cessna Citation Aircraft
Linearized continuous-time model:
(at altitude of 5000m and a speed of 128.2 m/sec)

[—0.3]
0
—17

0

Angle of attack

m States: r;: angle of attack, z: pitch angle, x3: pitch rate, z;: altitude

m Outputs: pitch angle and altitude

m Constraints: elevator angle +0.262rad (:|:15°), elevator rate +().524rad

(£60°), pitch angle +0.349 (+39°)
@ Open-loop response is unstable (open-loop poles: 0, 0, —1.5594 + 2.294)
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MPC Features
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LQR and Linear MPC with Quadratic Cost

m Quadratic cost

m Linear system dynamics

m Linear constraints on inputs and states

LQR

o0
Joo((t)) = min Y _ 7' Qe + u Ru
k=0
s.t. 1 = Az + B,

1y = (1)

Assume: Q= QT =0, R=RT -0

MPC
N-1
Jo(z(t)) = ngfin Z T T Q. + up T Ruy,
b k=0

S.1. Tpy41 = Az + Buy
. e A, up €U
19 = (1)
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MPC Features
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Example: LQR with saturation

Linear quadratic regulator with saturated inputs. Problem parameters:
_ o _ o Sampling time (.25sec,
At time t = 0 the plane is flying with a deviation of Q=1 R=10

10m of the desired altitude, i.e. x5 = [0;0;0; 10]

[E+]

200

_ ] m Closed-loop system is
E; o unstable
=
- 3 m Applying LQR control
= 5 and saturating the
o
200 : 2 controller can lead to
0 2 4 6 8 10 . -
Time (sec) instability!
g 05
E1
2
=
s
2
&
w 0.5

@ Time (gec)




-~

MPC Features
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Example: MPC with Bound Constraints on Inputs

MPC controller with input constraints |u:| < 0.262 Problem parameters:
Sampling time (.25sec,
Q=1 R=10, N =10

The MPC controller uses the

i =

P b ‘
E |o5 =, knowledge that the elevator
-3 L l;:: will saturate, but it does not
E = consider the rate constraints.
= 1oss

'l -1 h__

m 5 g = = ~ = System does not
Times {==r) converge to desired

g 05 : ; - - steady-state but to a
1 limit cycle
@
e
e
5
[
8
Ll

_D'EU 2 4 6 8 10
\ Time (sec)
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MPC Features
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Example: MPC with all Input Constraints

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |u. — up_,| < 0.3497 Q=1 R=10, N=10
20 0oz . The MPC controller
= £ considers all constraints on
r ® 3 the actuator
=
g 0 0.2%
=L 2 .
T m Closed-loop system is
10 : : . 0.4
0 2 4 6 8 10 stable

Time (sec) .
g 02 m Efficient use of the
Sy control authority
L
g 0
2 01}
&
m -0.2 L . .

4 6 8 10

Time {sec)

©
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MPC Features
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Example: Inclusion of state constraints

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |ii;| < 0.349 Sampling time (.25sec,
approximated by |up — up_q1| < 0.349T Q=1 R=10, N =10

Increase step:

: : 05 =
£ 100l \/\ EN At time { = () the plane is
o j 0 % flying with a deviation of
ii ) : 7 ﬁg 100m of the desired altitude,
- _5: - Pitch angle ~-0.9, i.e. -50° , : e 2=[0;0;0;100}
0 2 4 6 8 10
os bl m Pitch angle too large

during transient

0 2 4 & B 10
@ Time (sac)

Elevator angle u (rad)
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MPC Features
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Example: Short horizon

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;| < (0.349 Sampling time ().25sec,
approximated by |up — wp—q| < 0.349T, Q=I1I,R=10,N=10
150 : : : : 04 = Add state constraints for
£ 100l SONstrainton pitch angle active | £ passenger comfort:
= - -
E o 'f' o g - |z5| < 0.349
% 2 4 B 8 T
Time (sec)
g 05
H
2
2 _—
&
% o5 ' :
T 2 4 & 3 10
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MPC Features
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Example: Short horizon

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |up — ugp—1| < 0.349 7T Q=I, R=10, N =4

- Decrease in the prediction
3 £  horizon causes loss of the sta-
f’ l;,; bility properties
3 :
= §

o

—20 . —0.5
0 2 4 6 8 10
Time (sec)

g 05
1]
o
2 o
=]
5
2
ik
L

10

Time (zec)

[
&
g"h
M3
RS
o
L]




-~

MPC Features

Example: Short horizon

~ by ._;g.
\J}d,‘r/u"_.,;;u; N

MPC controller with input constraints |u;| < 0.262 Problem parameters:
and rate constraints |i;| < 0.349 Sampling time 0.25sec,
approximated by |ur — up—1| < 0.3497T Q=1 R=10, N =14
20 , - 02 — Inclusion of terminal cost and
£ €  constraint provides stability
= 10 _—— Jo
G
g o} : 022
< Z =
: T
% 2 4 6 8 T
Time (zec)
E 0.2
=
@ i : ,
5 t f '
& 0.1} i i- :
5_ - : :
L I L L
4 & 8 10
\e Time {sec)
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{Stability and Invariance of MPC } @
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Loss of Feasibility and Stability
(] What can go wrong with “standard" MPC?

— No feasibility guarantee, 1.e., the MPC problem may not have a solution

— No stability guarantee, 1.e., trajectories may not converge to the origin

] Infeasibility can be due to:
— modeling errors
— disturbances

—wrong MPC setup (e.g., prediction horizon is too short)

L
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[Stability and Invariance of MPC J

Example : Loss of feasibility - Double Integrator

Consider the double integrator

{I(t—l—l} - ![1}
y(t) = |1

subject to the input constraints

and the state constraints

Compute a receding horizon controller with quadratic objective with

1 0

N =3, P:Q:[D X

], R = 10.

&

[ (| 12 "1&@'
'-’ruiw/: '-7"7&/') [-d})
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Stability and Invariance of MPC

S i
Example : Loss of feasibility - Double Integrator

The QP problem associated with the RHC is

=10.00 22.00 -=10.00
—0.50 —=10.00 31.50

H =

—=10.50 10.00 —{'}.50] Y = 14.50 23.50

13.50 —=10.00 —0.50
[ ] ? _ I:—ED.SLI 10.00 9.50 23.50 54.50

- 0.50 —=1.00 0.50 - 050 0.50 7

—0.50 1.00 —=0.50 —0.50 —0.50 - 0.50 -

=il =i -Got) —11.a 0.50

0.50 0.00 0.50 0.50  0.50 5 oD

—0.50 0.00 —0.50 —0.50 —0.50 200

0.50 0.00 —0.50 —0.50 —0.50 5 00

0.50 0.00 0.50 0.50 0.50 5.00

—1.00 0.00 0.00 0.00  0.00 5.00

0.00 —1.00 0.00 0.00 0.00 5.(1((‘1

100 0.00 0.00 0.00 0.0 5.00

0.00 1.00 0.00 H Hﬂ H . HH r;:_:m

= | 0.00 0.00 —1.00 — | 0.00 0.0 - — | 050
Go = 000 000 1o |* Fo =] 000 000 |5 o= |03
0.00 0.00 0.00 1.00 - 1.00 2.00

—0.50 0.00 0.50 —0.50 —0.50 5.00

0.00 0.00 0.00 —1.00 —1.00 3.00

0.50 0.00 —0.50 0.50  0.50 5.00

—0.50 0.00 0.50 —0.50 —1.50 0.50

0.50 0.00 —0.50 0.50  1.50 Ly

0.00 0.00 0.00 T T 200

0.00 0.00 0.00 B - - 5.00 -
@ L 000 000 0.00 4 L 0.00 =100 !
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Stability and Invariance of MPC

Example : Loss of feasibility - Double Integrator

1) MEASURE the state z(t) at time instance ¢

2) OBTAIN Uf(z(t)) by solving the optimization problem in (1)
3) IF Uj(z(t)) =0 THEN ‘problem infeasible’ STOP

4) APPLY the first element uj of U7 to the system

5) WAIT for the new sampling time ¢ + 1, GOTO 1)

XE
(=]
i
L/
FLENE.
s

&

- Y g b
\qu,;r/:":,y;g;f"gu

Depending on initial condition, closed loop trajectory may lead to states for which

@ optimization problem is infeasible.
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[Stability and Invariance of MPC

-~

‘-’;L-{L,J Iz

lity - Double Integrator

i

i

Loss of feas

Example

Qo000 0000OBEEEEEO00 00N

00C0OOOOCOCHODDODOOPLOOOP
00000000QDODODOD000OP
DGGGGGDﬂunnnunﬂGGGD:
DGDGGDGHDDDDDDJDGDG:
DDDDODQUDEUEEE%DOOD:
Q00000 DODODNOO0NONVOOO0Y
00000000 N0ON00000000)
000000DNDNNONgo0000d
000000000 0DONgO0000¢

DOBDD@DDDDDDDﬂOOOQO:ﬂuLI

DDDDDUDDDDDDD.@ODGDD:
00000 DDODOODODORO0000O(
0000CUOODNDONOO00000(
0000QODDOOODORO00000Q
ooooOmoOoDooDEOoOobhoQ0OOOOQ
0000BDOOONOoOgoO000000d
0000hDDOOOOPOOO0000(
0000D0DDD0O00000000d
DUDEDDDDDD,EDGUEDGDG:

trajectories
» Go to mpcdoubleint.m in MPC Toolbox

o

> Boxes (Circles) are 1nitial points leading (not leading) to feasible closed-loop
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Summary: Feasibility and Stability

Problems originate from the use of a ‘short sighted’ strategy

= Finite horizon causes deviation between the open-loop prediction and the
closed-loop system: Set of faasible

Closed-loop initial states for

trajectories Open-loop 3 / open-loop St of initial
L predictions prediction states leading to
| s J/ feasible closed-

W, l00p trajectories

0 Sal ]
-
i 3 _"'J '
-5 -5 0 5
-5 0 5 X

4

> ldeally we would solve the MPC problem with an infinite horizon, but that is
computationally intractable

» Design finite horizon problem such that it approximates the infinite horizon

o
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Summary: Feasibility and Stability

= Infinite-Horizon
If we solve the RHC problem for N = 00 (as done for LQR), then the open loop
trajectories are the same as the closed loop trajectories. Hence
= If problem is feasible, the closed loop trajectories will be always feasible

= If the cost is finite, then states and inputs will converge asymptotically to the origin
= Finite-Horizon
RHC is “short-sighted” strategy approximating infinite horizon controller. But

= Feasibility. After some steps the finite horizon optimal control problem may become

infeasible. (Infeasibility occurs without disturbances and model mismatch!)

= Stability. The generatecl control inputs may not lead to trajectories that converge to

the origin.

o
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5 'J teg
S

Feasibility and stability in MPC - Solution

= Main idea: Introduce terminal cost and constraints to explicitly ensure

feasibility and stability:

N-=1
Joy (1) = min p(zy) + Z g T, uy) Terminal Cost
’ k=0
subj. to

Th4+1 = Az + Bu, k=0,...,N -1
X, mmeld, k=0,....N—-1
In € Ay Terminal Constraint
9 = z(t)

p(-) and A} are chosen to mimic an infinite horizon.

© y
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Feasibility and Stability

Feasibility and Stability of MPC: Proof
Main steps:

sequence at all time instants when starting from a feasible initial point

Two cases:
1.  Terminal constraint at zero: Xy — O
2. Terminal constraint in some (convex) set: x5 € X,

General notation:

N-1
Ji(rg) =min  plzy) + E q Ti. U;)
Un '~..._..V._.u-f
terminal cost stage cost

@ Quadratic case: q(z;, u;) = r} Qx; + ul Ru;, p(zy) = z Py

&

P e o,
b B s £l

= Prove recursive feasibility by showing the existence of a feasible control

= Prove stability by showing that the optimal cost function is a Lyapunov function
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Feasibility and Stability

Stability of MPC - Zero terminal state constraint

Terminal constraint: zy € Ay =0

m Assume feasibility of mp and let
{up, uf, ..., uy_,} be the optimal control
sequence computed at zy and {z(0), =y, ..., =y}
be the corresponding state trajectory

m Apply u; and let system evolve to z(1) = Axy + Bu

m At (1) the control sequence
{ul, wi, ..., ul_,, 0} is feasible (apply 0 control
input = Ty = D)

= Recursive feasibility v/

@ = Ji(x) is a Lyapunov function — (Lyapunov) Stability v/
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Feasibility and Stability @

- v
Vb otz ¢ P

Stability of MPC - Zero terminal state constraint

Terminal constraint: =y € Ay =0
Goal: Show Jj(r;) < Ji(mg) Vp #0

N-1
"lrlll‘ (ﬂl Il"n' + Z Li, U
_u =t
N
Jo(:1) < Jo(z:) =) _ gl uf)
i=1
=quu-- q(z0, ) + g(zn, un)
i=0
N et Y
Subtract cost =0, Add cost
at stage 0 for staying at 0

= J(z) is a Lyapunov function — (Lyapunov) Stability v

o
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Example: Impact of Horizon with Zero Terminal
Constraint

&

B,
Rt L gl

System dynamics:

12 1 1
Tl =1 1| T o5

Constraints:

U= {u | flullo <1} = {u | Auu < by}

Stage cost:

X ={z |-50<11 <50, - 10<m» <10} ={z | Aex < b, }

~
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Example: Impact of Horizon with Zero Terminal

Constraint
10r

Control-Invariant
Set

‘1—%{} 6 50

@ The horizon can have a strong impact on the region of attraction.
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Extension to More General Terminal Sets

Problem: The terminal constraint x, = O reduces the size of the feasible set

Goal: Use convex set X, to increase the region of attraction

o Feasible set for x,€ .1; Double integrator

;Feasible set for; x=0

0 2| <t < |?
-1 _'} —_ J"{ } —_— 5
o} —0.5 < u(t) <0.5
. 1 0
T :':n 2 4 6 N=50= [ﬂ 1:| JR=10

Goal: Generalize proof to the constraint x € X,

© y
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Invariant sets

Definition: Invariant set

A set O is called positively invariant for system z(t + 1) = f(z(t)), if
z(0)eO=z(t) e O, VieN,

The positively invariant set that contains every closed positively invariant set is
called the maximal positively invariant set O...

T Infeasible after
= one step

Invariant
- Recursively

feasible

Infeasible after
two steps
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Stability of MPC - Main Result

Assumptions

Stage cost is positive definite, i.e. it is strictly positive and only zero at the
origin

Terminal set is invariant under the local control law v(z;):
Tp41 = Az + Bu(z) € Xy, for all o € A
All state and input constraints are satisfied in A):
X C X, vizm) eld, forall o € &

Terminal cost is a continuous Lyapunov function in the terminal set X and
satisfies:

P(xryr) — ploy) < —q(zp, v(zy)), for all 2, € A

o
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Feasibility and Stability @

Under those 3 assumptions:

T heorem

The closed-loop system under the MPC control law u;)(x) is asymptotically stable
and the set X is positive invariant for the system z(k + 1) = Az + Buj(z).
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Stability of MPC - Outline of the Proof

m Assume feasibility of z(0) and let
{ug, ui, ..., u}_,} be the optimal control
sequence computed at z(0) and {z(0), z;. ...
the corresponding state trajectory

m At (1), {uf, u3, ..., v(zn)} is feasible:

xy is in Xy — v(xy) is feasible

End I‘.!.Ir+1 — _."jlil':‘rl,l.' + B'li‘(il'ﬁ'r} In :Jf:r

= Terminal constraint provides recursive feasibility

o
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Stability of MPC - Outline of the Proof

m Assume feasi bility of z(0) and let
{ug, uy, ..., uy_,} be the optimal control

sequence computed at z(0) and {z(0), =, ..., zn}
the corresponding state trajectory

m At (1), {u], w3, ..., v(zn)} is feasible:
xy is in Xy — v(xy) is feasible

and zy4; = Azy + Bu(zy) in A

> Terminal constraint provides recursive feasibility

—

o
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Stability of MPC - Outline of the Proof
Ty(a) = Y alae ) + plan)

Feasible, sub-optimal sequence for z; : {uy, w3, ..., v(zn)}
o
Jy(m) < Z q(zi, u7) + p(Azy + Bu(zy))
i=1
N-1
= Z q(zi, up) + p(zn) — q(20. uy) + p(Azy + Bu(zy))
=0

- P{IN} + EI{IN: ’i'_!{IN])
= J5 (%) — q(70, ug) + p(Azy + Bo(zy)) — p(zx) + q(zn, v(2N))

-

e

plzx)<0

= Jo (1) — Jg(%) < —q(x0,45), ¢>0

Jo(x) is a Lyapunov function decreasing along the closed loop trajectories
@ =+ The closed-loop system under the MPC control law is asymptotically stable

\




Feasibility and Stability

Jo (79) =

Quadratic Cost

min
Ug

subj. to

N=1

zy Pry + E 2. Qry. + uj Ruy

Terminal Cost

k=0
Tht1 = Az + By, k=0,....N -1
neX, uy.eld, k=0.....N—-1
IN € Xf Terminal Constraint
g = z(t)

&

e R
J!”L.J;,v‘ I/ ’.‘r 17, U)J’¢ /s

Choice of Terminal Sets and Cost - Linear System,
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Choice of Terminal Sets and Cost - Linear System,

Quadratic Cost

m Design unconstrained LQR control law
Foo = —(B'PooB+ R)™'B'P
where P.. is the solution to the discrete-time algebraic Riccati equation:
Py =A'PoA+ Q- A'P.B(B'P.B+R)"'B'P,A

m Choose the terminal weight P = P__

m Choose the terminal set Et'f to be the maximum invariant set for the
closed-loop system 341 = (A + BF )z

Tr41 = Az + BFoo(xi) € &y, for all o € A

All state and input constraints are satisfied in Aj:

@ Xy CX, Foomp €U, for all 7, € A
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Choice of Terminal Sets and Cost - Linear System,

Quadratic Cost

The stage cost is a positive definite function

By construction the terminal set is invariant under the local control law
= F.T

Terminal cost is a continuous Lyapunov function in the terminal set A and
satisfies:
Ty PTky1 — Tp Pop =1 (—Poc + A'PocA — A'PooB(B'Poo B+ R)™'B' P A)zs
= —1, Qx;

]
All the Assumptions of the Feasibility and Stability Theorem are verified.

o
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Example: Unstable Linear System

System dynamics:

12 1 1
Th+1 = [ 0 1] Tk + [{].5} Uk

Constraints:

X:={z|-50<2 <50, -10<2, <10} ={z | A,z < b, }
U:= {H | |IH”1 < ]-} — {H | Auu =< bu}

Stage cost:

q(z,u) =1’ {{ll (l}] T+ulu

Horizon: N = 10
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Example: Designing MPC Problem

Compute the optimal LQR controller and cost matrices: F.., P..

Tr+1 = (A + BF.. )z subject to the constraints

A, 1 [b,
e | Ll o= )

\; !é

10

T 1
1
i\
k!

o v

B Compute the maximal invariant set A for the closed-loop linear system

&

- 3 e,
MO P

\
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Example: C

6

5_

4-

losed-loop behavior

-10 -5
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Example: Closed-loop behavior

4+
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Example: Closed-loop behavior
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Example: Closed-loop behavior
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Example: Closed-loop behavior
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Example: Lyapunov Decrease of Optimal Cost

10 15
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Stability of MPC — Remarks

[ The terminal set X; and the terminal cost ensure recursive feasibility and stability
of the closed-loop system.,

But: the terminal constraint reduces the region of attraction.

(Can extend the horizon to a sufficiently large value to increase the region)
Are terminal sets used in practice?
 Generally not...

[ Not well understood by practitioners

[ Requires advanced tools to compute (polyhedral computation or LMI)
[ Reduces region of attraction

[ A ‘real’ controller must provide some input in every circumstance
O Often unnecessary

[ Stable system, long horizon — will be stable and feasible in a (large) neighbourhood of
the origin

© y
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Choice of Terminal Set and Cost: Summary
(J Terminal constraint provides a sufficient condition for stability

| Region of attraction without terminal constraint may be larger than for
MPC with terminal constraint but characterization of region of attraction

extremely difficult
X~ 0 simplest choice but small region of attraction for small N
 Solution for linear systems with quadratic cost
[ In practice: Enlarge horizon and check stability by sampling

[ With larger horizon length N , region of attraction approaches maximum

control invariant set

o y
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 Basic Ideas of Predictive Control
dReceding Horizon Control Notation
(U MPC Features

[ Stability and Invariance of MPC

 Feasibility and Stability
dProof for X.= 0

(JGeneral Terminal Sets

4 Example
(] Extension to Nonlinear MPC

o
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Extension to Nonlinear MPC

Consider the nonlinear system dynamics: x (t + 1) = g (x (t), u(t))

N—1
Jo (z(t)) = II[t_lriIl plzn) + z g Tk, uk)
o k=0
subj. to 141 = gz, uk), k=0,...,.N -1
neX, yuyeld, k=0,....N—-1
Iy c A::f
19 = Z(t)

] Presented assumptions on the terminal set and cost did not rely on linearity

' Lyapunov stability is a general framework to analyze stability of nonlinear dynamic

systems
— Results can be directly extended to nonlinear systems.

However, computing the sets X; and function p can be very difficult
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Summary:

Finite-horizon MPC may not be stable!

Finite-horizon MPC may not satisfy constraints for all time!

] An infinite-horizon provides stability and invariance.

[ We ‘fake’ infinite-horizon by forcing the final state to be in an invariant set
for which there exists an invariance-inducing controller, whose infinite-

horizon cost can be expressed in closed-form.

[ These ideas extend to non-linear systems, but the sets are difficult to

compute.

o y




