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Soft Constraints: Motivation

H Input constraints are dictated by physical constraints on the
actuators and are usually “hard"

[ State/ output constraints arise from practical restrictions on the
allowed operating range and are rarely hard

J Hard state/ output constraints always lead to complications in the
controller implementation
[ Feasible operating regime is constrained even for stable systems

[ Controller patches must be implemented to generate reasonable control
action when measured/estimated states move outside feasible range
because of disturbances or noise

 In industrial implementations, typically, state constraints are softened
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Mathematical Formulation

m Original problem:

min f(z)

-

subj. to g(z) <0

Assume for now g(z) is scalar valued.
m "Softened” problem:

Ilelien f(z) + I(e)

subj. to glz) <e
e > ()

Requirement on [(€)

If the original problem has a feasible solution z*, then the softened problem should
have the same solution z*, and ¢ = ().

Note: [(¢) = v- ¢~ does not meet this requirement for any v > 0 as demonstrated

° next.




/

L

Soft Constraints

Quadratic Penalty
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e=1

m Constraint function g(z) £ z — z* < 0 induces feasible region (grey)
— minimizer of the original problem is z*

m Quadratic penalty /(c) = v-¢” for e > 0
= minimizer of f(z) + I{€) is (2" + €*, ") instead of (2*,0)
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Linear Penalty
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m Constraint function g(z) £ z — 2" < 0 induces feasible region (grey)
— minimizer of the original problem is z*

m Linear penalty l(e) = u - € for € > 0 with u chosen large enough so that
u+lim,_,.. f'(z) >0

e —= minimizer of f(z) + l(€) is (z*,0)

S




s I
Soft Constraints @

7 j b S
J"d"l‘/f‘.’i’?@"‘ ,K,,

Comments

m Disadvantage: [(¢) = u - € renders the cost non-smooth.
m Therefore in practice, to get a smooth penalty, we use

lle)=u-e+v-e

with « > u™ and v > (.

m Extension to multiple constraints g;(z) <0, j=1,...,r:

T

f{r}=2uj-rj+vj-cf (1)

=1

where u; > uf and v; > 0 can be used to weight violations (if necessary)
differently.

L




/

e

JSoft Constraints
JMotivation

(JMathematical Formulation

] Reference Tracking
A The Steady—State Problem

JOftset Free Reference Tracking

L




/

Reference Tracking @

7 j b S
J"d"l‘/f‘.’i’?@"‘ ,K,,

Tracking problem

Consider the linear system model

TrLey1 = ..’1.]'?;; + Euk

Yk = Cry

Goal: Track given reference r such that yp — r as k — oc.

Determine the steady state target condition zs, us:

T, = Az, + Bu, lI - A -E] !x] [n]
—— {ﬁ =

{'.-,T_]':’; = r 0 U T

o




Reference Tracking

S

Steady-state target problem

o

m In the presence of constraints: (z,, u,) has to satisfy state and input
constraints.

m In case of multiple feasible u,, compute ‘cheapest’ steady-state (z,, u,)
corresponding to reference r:

: T
min u; R, u,

‘t -4 = x| |0
o (1' 0 u.| |r
r. e X, u,€l.

m In general, we assume that the target problem is feasible

m If no solution exists: compute reachable set point that is ‘closest’ to r:

min (Cz, — r) T Q.(Cr, — 1)
s.t. . = Az, + Bu,
s €X, us€eld.
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RHC Reference Tracking

We now use control (MPC) to bring the system to a desired steady-state
condition (s, u;) yielding the desired output yr — r.

The MPC is designed as follows ?

N=1
min  lyx = Crllp + Y llue = Crlly + llu — wll%
e k=0

subj. to  model
constraints
Ty = z(1).

Drawback: controller will show offset in case of unknown model error or
disturbances.
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RHC Reference Tracking without Offset

Discrete-time, time-invariant system (possibly nonlinear, uncertain)

Tm(t+1) = g(z,(t), u(t))
ym(t) = h{zm(t))

Objective:

m Design an RHC in order to make y(t) track the reference signal r(t}, i.e.,
(y(t) — r(t)) = 0 for t =+ oc.

m In the rest of the section we study step references and focus on zero
steady-state tracking error, y(t) — r.. as t — oc.

Consider augmented model

z(t+1) = Ax(t)+ Bu(t)+ Bad(t)
dit+1) = d(t)
y(t) = Cx(t) + Cad(t)

with constant disturbance d(t) € R™.
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RHC Reference Tracking without Offset

State observer for augmented model

#(t+1)] iﬂd B
dit+1) | ~ d{a‘} o |

+ [ L ] (=ym(t) + Cz(t) + Fd'd“}

Lemma

Suppose the observer is stable and the number of outputs p equals the dimension
of the constant disturbance ng. The observer steady state satisfies:

A-1 B I —Bd.
C 0 lng - Ym.oo — {?ddx L

where ym ~ and u.. are the steady state measured outputs and inputs.

@ = The observer output C'%._ + Cyd.. tracks the measured output y,, .. without
K offset.
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RHC Reference Tracking without Offset

For offset-free tracking at steady state we want ym -« = r=. |he observer

condition
A-T B[] _ —Bad..
C 0 Ung, B Um.oo = {Tdf‘}::c

suggests that at steady state the MPC should satisfy

A—=I B[ Ztargete | _ [ —Bad
C 0 Utarget, oo Too — Gd;f:c
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RHC Reference Tracking without Offset

Formulate the RHC problem

N=1
il = Flle o+ 3 o= Fallg + llue = el
subj. to  Trg1 = Az + Bug + Bady, k=0,....N
T, € X, up € U, k=0,....N—1
Iy € .-:[’Jr
drs1 = dg. k=0,...,N
19 = (1)
dp = d{ﬂ*

with the targets u; and T; given by

lﬂf_?j ﬁ”;i]:[r(iﬁﬂﬂ]

~
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RHC Reference Tracking without Offset

Denote by cp(Z(t), a:flif}. r{t)) = ug(Z(t), ;?T{t}.‘r{t}) the control law when the
estimated state and disturbance are I(t) and d(t), respectively.

T heorem

Consider the case where the number of constant disturbances equals the number
of (tracked) outputs ny; = p = r. Assume the RHC is recursively feasible and
unconstrained for ¢ > j with j € " and the closed-loop system

w(t+1) = fla(t), co((t), d(¢), r(1)))

#t+1) = (A+ L:C)a(t) + (Ba+ L:Ca)d(2)
) +Beg(2(t), d(t). r(t)) — Laym(t)
dit+1) = LyCz(t)+ (I + LyCy)d(t) — Lyy,.(t)

-

converges to %, d., Ym oo, i€, T(t) = T, &{t} —d., Y(t) = Um.sc 35
i — o0.

@ Then ym(t) = rx as t = oo.




