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[ Robust MPC J @

[ Uncertainty Models

dImpact of Bounded Additive Noise
[ Robust Open-Loop MPC

[ Closed-Loop Predictions
dTube-MPC

Reference:

F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for
Linear and Hybrid Systems, Cambridge University Press, 2017.
[Ch. 12].
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Uncertainty Models @

. MPC relies on a model, but models are far from perfect

] Noise and model inaccuracies can cause:
[ Constraint violation
d Sub—optimal behaviour can result

[ Persistent noise prevents the system from converging to a single point

1 Can incorporate some noise models into the MPC formulation
| Solving the resulting optimal control problem is extremely difficult

d Many approximations exist, but most are VEry conservative
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Models
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Additive Bounded MNoise

glx,uw,8)=Ax+Bu+w, weW

A, B known, w unknown and changing with each sample

[ Dynamics are linear, but impacted by random, bounded noise at each

time step

d Can model many nonlinearities in this fashion, but often a

conservative model

[ The noise is persistent, i.e., it does not converge to zero in the limit
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Uncertain constrained linear system

xT =Ax+ Bu+w (x, u)e X, U we W

[ Design control law u = K(x) such that the system:
1. Satisfies constraints : {x,} ~> X, {u,} - U for all disturbance realizations
2. Is stable: Converges to a neighborhood of the origin

3. Optimizes (expected/worst-case) “performance”
4. Maximizes the set {x0 | Conditions 1-3 are met}

Challenge: Cannot predict where the state of the system will evolve
We can only compute a set of trajectories that the system may follow

Idea: Design a control law that will satisfy constraints and stabilize the
system for all possible disturbances
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Goals of Robust Constrained Control @
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Uncertain State Evolution @

7 j b S
J"d"l‘/f‘.’i’?@"‘ ,K,,

Given the current state xg, the model xT = Ax + Bu + w and the set W,
where can the state be 1 steps in the future?

Many possible
trajectories ¢y(xg, u, w)

"0 Trajectory forw = 0

Define ¢;(xg, U, W) as the state that the system will be in at time i if the state
at time zero is xy, we apply the input 7 := {uy, ..., Upy_1+ and we observe the
disturbance w := {wq, .. ., Wh—1}.
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Uncertain State Evolution @
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MNominal system

xt = Ax + Bu

Uncertain system

xt=Ax+ Bu+w weW

x; = Axg + Bug
X =:ﬁFﬁh-FJQEhb-+1§u1

i—1
xi=Axo+ ) ABuis
k=0

1 = Axg + Bug + wy
do = A®xp + ABug + Buy + Awg + wy

i—-1 i—1
$i=Ax+ Y ABuix+) Afwi
k=0 r={)
i—1
di = x + Eﬂlk Wik

k=0

Uncertain evolution is the nominal system + offset caused by the disturbance

\\e (Follows from linearity)
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[Uncertain State Evolution

Many possible
trajectories ¢;(xm, u, w)

Trajectory forw =0
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Robust Constraint Satistfaction @
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Ensure that all possible states
(%, u, w) satisfy system con-
strants X.

X0

Ensure that all possible states

¢n(xp, u, w) are contained in the
\tﬂ’ﬁiﬂﬂsﬁ[.

The idea: Compute a set of tighter constraints such that if the nominal
system meets these constraints, then the uncertain system will too.
e We then do MFPC on the nominal system.
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Robust Constraint Satisfaction @

S

Goal: Ensure that constraints are satisfied for the MPC sequence.

Tightened constraints for ¢,

Require: x; € Y & {! AY L A"—ll W' and
@ Mominal x; satisfies tighter constraints — Uncertain state does too
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Putting it Together @
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Robust Open-Loop MPC

N—1
min z I(x;, u;) + Vr(xn)
=0
subj. to x4 = Ax; + Bu;
x € X e AW
Xp £ -:EI-'

where 4; = [A":' Al A‘] and ,f'f IS a robust invariant set for the
system x* = (A + BK)x for some stabilizing K.

We do nominal MPC, but with tighter constraints on the states and inputs.

We can be sure that if the nominal system satisfies the tighter constraints,
then the uncertain system will satisfy the real constraints.

\\@ = Downside is that A"W' can be very large
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MPC as a Game @
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Two players: Controller vs Disturbance
xT=flx,u)+w

1. Controller chooses his move u

2. Disturbance decides on his move w after seeing the controller's move
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MPC as a Game @
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Two players: Controller vs Disturbance
xT=f(x,u)+w

1. Controller chooses his move u

2. Disturbance decides on his move w after seeing the controller's move

What are we assuming when making robust predictions?

1. Controller chooses a sequence of N moves in the future {ug, .. ., Up—_1}
2. Disturbance chooses N moves knowing all Y moves of the controller

We are assuming that the controller will do the same thing in the future no
matter what the disturbance does!

Can we do better?

(- p
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1.
2.
3.

[Closed—Loop Predictions } @

[ SWhat should the future prediction look like?

Controller decides his tirst move u,
Disturbance chooses his first move w,

Controller decides his second move u,(x,) as a function of the first

disturbance w, (recall x, = Ax, + Bu, + w)
Disturbance chooses his second move w, as a function of u,

Controller decides his second move u,(x,) as a function of the first

two disturbances w,, w,
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Closed-Loop Predictions @
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We want to optimize over a sequence of functions {ug, ui(-). .. .. wn—1(-)}.

where w;(x) : R" — R™ is called a control policy, and maps the state at time
I to an input at time 1.

Motes:

* This is the same as making u a function of the disturbances to time i,
since the state 1s a function of the disturbances up to that point

e The first input wg 1s a function of the current state, which 1s known.
Therefore it 1s not a function, but a single value.

The problem: We can't optimize over arbitrary functions!

(. p
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Closed-Loop Predictions
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A solution: Assume some structure on the functions p;

Pre-stabilization pu;(x) = Kx + v
® Fixed K, such that A+ BK is stable
* Simple, often conservative

Linear feedback u,(x) = Kix + v
®* Optimize over K; and v;
* Non-convex. Extremely difficult to solve...

Disturbance feedback w;(x) = Z;;é Miiw; + v
® Optimize over M and v;
® Fguivalent to linear feedback, but convex!

* (Can be very effective, but computationally intense.

Tube-MPC ui(x) = vi + K(x — %)
® Fixed K, such that A+ BK is stable
® Optimize over x; and v;
®* Simple, and can be effective

@ We will cover tube-MPC in this lecture.

&
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Tube MPC @

S

xt=Ax+ Bu+w (x,u) e X x U we W

The idea: Seperate the available control authority into two parts

1. A portion that steers the noise-free system to the origin z+ = Az + Bv

2. A portion that compensates for deviations from this system
et =(A+BKle+ w

We fix the linear feedback controller K offline, and optimize over the nominal
trajectory {vq, ..., Va—1 }, which results in a convex problem.

(- p
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Tube MPC: System Decomposition @
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Define a "'nominal’, noise-free system:
Ziy1 = Az; + By;
Define a "tracking’ controller, to keep the real trajectory close to the nominal
ui = K(x —zi)+ v

for some linear controller K, which stabilizes the nominal system.

Define the error ¢; = x; — z;, which gives the error dynamics:

Eit1 = Xig1 — Zip1
= Ax; + Bu; + wy — Az — By
= Ax; + BK(x; — z;) + Bvi + w; — Az; — By;
=(A+BK)(xi—z)+w
= (A+ BK)e; + w;
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Tube MPC:Error Dynamics @
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Bound maximum error, or how far the ‘real’ trajectory is from the nominal
eiz1 = (A+ BK)e + w; w; € W

Dynamics A + BK are stable, and the set W is bounded, so there is some set
£ that e will stay inside for all time.

We want the smallest such set (the ‘minimal invariant set’)
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[Tube MPC: The Idea J @

o

We want to ignore the noise and plan the nominal trajectory
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Tube MPC: The Idea @

anywhera
in the set)

We know that the real trajectory stays “nearby’ the nominal one: x; € z, & £

because we plan to apply the controller u; = K(x; — z) + v; in the future
e (we won't actually do this, but it's a valid sub-optimal plan)

A
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Tube MPC: The Idea @

sanywhers
'in the set)
.

We must ensure that all possible state trajectonies satisfy the constraints

This 1s now equivalent to ensuring that z; 6 & C X
(Satisfying input constraints is now more complex - more later)
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Tube MPC

Gyt 75
What do we need to make this work?
® Compute the set £ that the error will remain inside

* Maodify constraints on nominal trajectory {z} so that z & £ C A" and
vi el o KE

®* Formulate as convex optimization problem

...and then prove that
* (onstraints are robustly satisfied

* The closed-loop system is robustly stable




/

Noisy System Trajectory @
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Given the nominal trajectory z;, what can the noisy system trajectory do?
Xi = Zj T &
Don't know what error will be at time /, but it will be in the set £

Therefore, x; can only be up to £ far from z

xiezdE={z+e|lec &}
-......otate constraints

~
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Noisy System Trajectory @
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Given the nominal trajectory z;, what can the noisy system trajectory do?
Xi = Zj T &
Don't know what error will be at time /, but it will be in the set £

Therefore, x; can only be up to £ far from z

xiezdE={z+e|lec &}
-......otate constraints

~
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Constraint Tightening @
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Goal: (x;, ;) € X = U for all {wg, ..., wi_1} € W

We want to work with the nominal system z+ = Az + Bv but ensure that the
noisy system x* = Ax + Bu + w satisfies the constraints.

Sufficient condition:
ZBECA = ZeXaE

The set £ 1s known offline - we can compute the constraints X' & £ offline!

A similar condition holds for the inputs:

e KE& v C Ul = vield & KE

o p




Tube-MPC: Problem Formulation @

Tube-MPC

i Zis1=Az;+ By €0, N-1])
zZeX et ie [0, N—1]
V|l weldsKE €0, N-1]
Zn € ¥

xpEFEE )

—_—

Tl
=

Feasible set:  Z(xp) := {

%
N—1
Cost function: V(Z, V) := z Iz, vi) + Vi(zn)
i=0
Optimization problem: (V" (xg), Z°(x0)) = argmin {V(Z, V) | (Z, ¥) € Z(xa)}
vz

Control law:  prupe(x) := K(x — Z3(x)) + vy (x)

Optimizing the nominal system, with tightened state an input constraints
First tube center i1s optimization vanable — has to be within £ of x

The cost 1s with respect to the tube centers

The terminal set is with respect to the tightened constraints

©
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[Tube MPC - Example J @

System dynamics

1 1 1
+_ - — i;:-_ {:
xT = ’D 1]x+ID.5]u+w W= {w]||wy| <0.01, |we] <0.1}

Constraints:
X = {x|[x]l= < 1} U:={ulllul =1}
Stage cost is:
Iz, v) = zi ' Qz + vi' Ry

where

01
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Tube MPC - Example

1. Choose a stabilizing controller K so that ||[A+ BK|| < 1

2. Compute the minimal robust invariant set £ = F__ for the system
x*=(A+BK)x+w, we W

We take the LQR controller for Q=1. R = 1:

K :=[-05198 —0.9400]

3r

o Evolution of the system

xT=(A+ BK)x +w for
xw=[-01 02]"

oir

&
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{Tube MPC - Example 1 @

¥ ;,:"' o l’ J"’(,:";J‘;"

: _~ Initial state

1 -E{T].O\ Planned tube trajectory
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{Tube MPC - Example
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_ Initial state

S

Possible future
trajectones
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Tube MPC - Summary @

Idea

O Split input into two parts: One to steer system (v), one to compensate for the noise (Ke)
u=Ke +v

[ Optimize for the nominal trajectory, ensuring that any deviations stay within constraints

Benefits:

O Less conservative than open-loop robust MPC (we’re now actively compensating for noise
in the prediction)

O Works for unstable systems

O Optimization problem to solve is simple

Cons:

O Sub-optimal MPC (optimal is extremely difficult)

1 Reduced feasible set when compared to nominal MPC
0 We need to know what W is (this is usually not realistic)

L




/Robust MPC for Uncertain Systems - @ A

Summary

G s A e
urv P .\,u, e

Idea

O Compensate for noise in prediction to ensure all constraints will be met
Cons

0 Complex (some schemes are simple to implement, like tubes, but complex to

understand)
[ Must know the largest noise W
O Often very conservative
[ Feasible set may be small
Benetfits
[ Feasible set is invariant - we know exactly when the controller will work

(] Easier to tune - knobs to tradeoff robustness against performance

(- p




