
اميرحسين نيكوفرد: ارائه كننده
مهندسي برق و كامپيوتر دانشگاه خواجه نصير



Data-driven MPC
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Machine learning and control engineering



Data-driven MPC
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MPC and ML = main trends in control R&D in industry !



Machine Learning (ML)
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assive set of techniques to extract mathematical models from data



Machine Learning (ML)
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 Good mathematical foundations from artificial intelligence,
statistics, optimization

 Works very well in practice (despite training is most often a
nonconvex optimization problem ...)

 Used in myriads of very diverse application domains

 Availability of excellent open-source software tools also explains
success



MPC design from data
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1. Use machine learning to get a prediction model from data (system
identification)
• Autoencoders, recurrent neural networks (nonlinear models)
• Online learning of feedforward/recurrent neural networks by EKF
• Piecewise affine regression to learn hybrid models
2. Use reinforcement learning to learn the MPC law from data
• Q-learning: learn Q-function defining the MPC law from data
• Policy gradient methods: learn optimal policy coefficients directly from

data using stochastic gradient descent
• Global optimization methods: learn MPC parameters (weights, models,

horizon,solver tolerances, ...) by optimizing observed closed-loop
performance



Learning prediction models for MPC
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Control-oriented nonlinear models:

• Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them

• Physics-based models: use physical principles to create a prediction model
(e.g.: weather forecast, chemical reaction, mechanical laws, ...)

• Gray-box (or physics-informed) models: mix of the two, can be quite
effective



Models for control systems design
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• Prediction models for model predictive control:
– Complex model = complex controller→ model must be as simple as

possible
– Easy to linearize (to get Jacobian matrices for nonlinear optimization)

• Prediction models for state estimation:
– Complex model = complex Kalman filter
– Easy to linearize

• Models for virtual sensing:
– No need to use simple models (except for computational reasons)

• Models for diagnostics:
– Usually a classification problem to solve
– Complexity is also less of an issue



Models for control systems design
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Nonlinear SYS-ID based on Neural Networks
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 Neural networks proposed for nonlinear system identification since the ’90s
 NNARX models: use a feedforward neural network to approximate the nonlinear

difference equation

 Neural state-space models:
-w/state data: fit a neural network model
-I/O data only: set xt = value of an inner layer of the network, such as an

autoencoder
 Alternative for MPC: learn entire prediction

 Recurrent neural networks are more appropriate for accurate open-loop
predictions, but more difficult to train (see later ...)



NLMPC based on Neural Networks
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Approach: use a neural network model for prediction

MPC design workflow:



MPC of Ethylene Oxidation Plant
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• Chemical process= oxidation of ethylene to ethylene oxide in a nonisothermal
continuously stirred tank reactor (CSTR)

• Nonlinear model (dimensionless variables):



Neural Network Model of Ethylene Oxidation Plant
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Train state-space neural-network model

NN model trained by ODYS Deep Learning toolset
(model fitting + Jacobians → neural model in C)



MPC of Ethylene Oxidation Plant
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MPC of Ethylene Oxidation Plant - Closed-loop results
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• Neural and model-based NLMPC have similar closed-loop performance
• Neural NLMPC requires no physical model



Learning nonlinear state-space models for MPC
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• Idea: use autoencoders and artificial neural networks to learn a nonlinear
state-space model of desired order from input/output data



Learning nonlinear state-space models for MPC
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Learning nonlinear neural state-space models for MPC

• Example: nonlinear two-tank benchmark problem

• Artificial neural network (ANN): 3 hidden layers 60 
exponential linear unit (ELU) neurons
• For given number of model parameters, autoencoder 
approach is superior to NNARX
• Jacobians directly obtained from ANN structure for 
Kalman filtering & MPC problem construction
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Learning affine neural predictors for MPC

• Alternative: learn the entire prediction
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Learning affine neural predictors for MPC



21

Learning MPC from data
• Neural prediction models can speed up the MPC design a lot

• Experimental data need to well cover the operating range (as in linear 
system identification)

• No need to define linear operating ranges with NN’s, it is a one-shot 
model-learning step

• Physical models may better predict unseen situations than black box 
models

• Physical modeling can help driving the choice of the nonlinear model 
structure to use (gray-box models)

• NN model can be updated online for adaptive nonlinear MPC
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Learning neural network models for control

Training feedforward neural networks
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Training recurrent NN's via EKF

Training feedforward neural networks by EKF
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Recurrent neural networks
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Training RNNs via Extended Kalman Filtering

Training RNNs by EKF
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Training RNNs by EKF - Examples

• Dataset: magneto-rheological fluid damper 3499 I/O data
• N =2000 data used for training, 1499 for testing the model
• Same data used in NNARX modeling demo of SYS-IDToolbox for MATLAB
• RNN model: 4 hidden states, shallow state-update and output functions 6
neurons, atan activation, I/O feedthrough
• Compare with gradient descent (Adam)
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Training RNNs by EKF - Examples
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Training LSTMs by EKF - Examples

• Use EKF to train Long Short-Term Memory (LSTM) model

• Training results (mean and std over 20 runs):

• EKF training applicable to arbitrary classes of black/gray box recurrent
models!
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Training RNNs by EKF - Examples
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Training RNNs via Sequential Least Squares

Training RNNs by Sequential Least-Squares
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Training RNNs by Sequential Least-Squares
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Training RNNs by Sequential LS and ADMM
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Training RNNs by Sequential LS and ADMM

• We also want to handle non-smooth (and non-convex) regularization terms

• Idea: use alternating direction method of multipliers (ADMM) by splitting
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Training RNNs by Sequential LS and ADMM
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Training RNNs by Sequential LS and ADMM
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Training RNNs by Sequential LS and ADMM

• Note: no convergence to a global minimum is guaranteed

• NAILS/LM = flexible & efficient algorithm for training control-oriented RNNs
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Training RNNs - Silverbox benchmark

• Silverbox benchmark (Duffin oscillator): 10 traces of ≈8600 data used
for training, 40000 for testing
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Training RNNs - Silverbox benchmark
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Training RNNs - Silverbox benchmark
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Training RNNs

• Computation time (Intel Core i9-10885H CPU @2.40GHz):

• Several sparsity patterns can be exploited in EKF updates (supported by
ODYS EKF and ODYS Deep Learning libraries)
• Note: Extension to gray-box identification + state-estimation is
immediate
• Note: RNN training by EKF can be used to generalize output disturbance
models for offset-free set-point tracking to nonlinear I/O disturbance
models
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Deep Nonlinear MPC for Autonomous Driving
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Deep Nonlinear MPC for Autonomous Driving
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Deep Nonlinear MPC for Autonomous Driving

• Model validation on test data:

• C-code (network+Jacobians) automatically generated for ODYS MPC
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Deep Nonlinear MPC for Autonomous Driving

• Closed-loop MPC: overtake vehicle #1, keep safety distance from vehicle #2

• Good reference tracking, constraints on ey , vx satisfied, smooth command 
action



Data-driven MPC
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• Can we design an MPC controller without first identifying a model of the
open-loop process ?



Data-driven direct controller synthesis

46



Data-driven MPC
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• Design a linear MPC (reference governor) to generate the reference r

• MPC designed to handle input/output constraints and improve performance



Data-driven MPC - An example
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• Experimental results: MPC handles soft constraints on u,∆u and y
(motor equipment by courtesy of TU Delft)
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No open-loop process model is identified to design the MPC controller !



Optimal data-driven MPC
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Optimal data-driven MPC
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Optimal data-driven MPC
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Data-driven optimal policy search
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Optimal Policy Search Problem
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Descent Direction
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Optimal Policy Search Algorithm
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Special Case: Output Tracking
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Example: retrieve LQR from data
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Example: retrieve LQR from data
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Nonlinear Example
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Nonlinear Example

• Extended to switching-linear and nonlinear policy, and to collaborative 
learning
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Learning optimal MPC calibration

• The design depends on a vector x of MPC parameters
• Parameters can be many things:
– MPC weights, prediction model coefficients, horizons
– Covariance matrices used in Kalman filters
–Tolerances used in numerical solvers
• Define a performance index f over a closed-loop simulation or real 
experiment.
For example:
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Global optimization algorithms for auto-tuning

What is a good optimization algorithm to solve min f (x) ?

•The algorithm should not require the gradient f (x) of f (x), in particular if
experiments are involved (derivative-free or black-box optimization )

•The algorithm should not get stuck on local minima (global optimization)

• The algorithm should make the fewest evaluations of the cost function f
(which is expensive to evaluate)
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Global optimization algorithms for auto-tuning

• Several derivative-free global optimization algorithms exist: 
– Lipschitzian-based partitioning techniques:

• DIRECT (DIvide in RECTangles) 
• Multilevel Coordinate Search (MCS)

– Response surface methods
• Kriging , DACE 
• Efficient global optimization (EGO) 
• Bayesian optimization

– Genetic algorithms (GA)
– Particle swarm optimization (PSO)
– ...
• New method: radial basis function surrogates + inverse distance 
weighting (GLIS)
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Auto-tuning - GLIS
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Auto-tuning - GLIS
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GLIS vs Bayesian Optimization
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Auto-tuning: MPC example
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Auto-tuning: Example
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MPC Autotuning Example

• Linear MPC applied to cart-pole system: 14 parameters to tune

– sample time
– weights on outputs and input increments
– prediction and control horizons
– covariance matrices of Kalman filter
– absolute and relative tolerances of QP solve

• MPC parameters tuned using 500 iterations of GLIS
• Performance tested with simulated cart on two hardware platforms (PC, 
Raspberry PI)
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MPC Autotuning Example

• MPC parameters tuned by GLIS global optimizer (500 fcn evals)
• Auto-calibration can squeeze max performance out of the available hardware
• Bayesian optimization gives similar results, but with larger computation
effort
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Auto-tuning: Pros and Cons
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Active preference learning
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Preference-learning example 

• Realistic image synthesis of material appearance are based on models
with many parameters x1, . . . , xn
• Defining an objective function f (x) is hard, while a human can easily
assess whether an image resembles the target one or not
• Preference gallery tool: at each iteration, the user compares two images
generated with two different parameter instances
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Learning MPC from dataActive preference learning algorithm
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Semi-automatic calibration by preference-based learning
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Preference-based tuning: MPC example
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Preference-based tuning: MPC example
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Preference-based tuning: MPC example 
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Preference-based tuning: MPC example 



80

Preference-based tuning: MPC example
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Corner-case detection
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Corner-case detection: Case study
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Corner-case detection: Case study
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Corner-case detection: Case study
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Learning-based MPC: final remarks
• Learning-based MPC is a formidable combination for advanced control:

– MPC / online optimization is an extremely powerful control
methodology

– ML extremely useful to get control-oriented models and control laws
from data
• Ignoring ML tools would be a mistake (a lot to “learn” from machine
learning)
• ML cannot replace control engineering:

– Black-box modeling can be a failure. Better use gray-box models
when possible

– Approximating the control law can be a failure. Don’t abandon online
optimization

– Pure AI-based reinforcement learning methods can be also a failure
• A wide spectrum of research opportunities and new practices is open !


